102
Views
20
CrossRef citations to date
0
Altmetric
Review

Angiogenesis in cutaneous malignant melanoma and potential therapeutic strategies

, , , &
Pages 1583-1598 | Published online: 10 Jan 2014

References

  • Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19(16), 3622–3634 (2001).
  • Curtin JA, Fridlyand J, Kageshita T et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med.353(20), 2135–2147 (2005).
  • Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer6(9), 714–727 (2006).
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med.349(5), 427–434 (2003).
  • Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon a in metastatic renal-cell carcinoma. N. Engl. J. Med.356(2), 115–124 (2007).
  • Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356(2), 125–134 (2007).
  • Escudier B, Pluzanska A, Koralewski P et al. Bevacizumab plus interferon-α 2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind Phase III trial. Lancet370(9605), 2103–2111 (2007).
  • Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N. Engl. J. Med.324(1), 1–8 (1991).
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.1(1), 27–31 (1995).
  • Weidner N, Folkman J, Pozza F et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl Cancer Inst.84(24), 1875–1887 (1992).
  • Imao T, Egawa M, Takashima H, Koshida K, Namiki M. Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int. J. Urol.11(11), 948–953 (2004).
  • Baldewijns MM, Thijssen VL, Van den Eynden GG et al. High-grade clear cell renal cell carcinoma has a higher angiogenic activity than low-grade renal cell carcinoma based on histomorphological quantification and qRT-PCR mRNA expression profile. Br. J. Cancer96(12), 1888–1895 (2007).
  • Qian CN, Huang D, Wondergem B, Teh BT. Complexity of tumor vasculature in clear cell renal cell carcinoma. Cancer115(10 Suppl.), 2282–2289 (2009).
  • Busam KJ, Berwick M, Blessing K et al. Tumor vascularity is not a prognostic factor for malignant melanoma of the skin. Am. J. Pathol.147(4), 1049–1056 (1995).
  • Carnochan P, Briggs JC, Westbury G, Davies AJ. The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85–81.25 mm in thickness. Br. J. Cancer64(1), 102–107 (1991).
  • Neitzel LT, Neitzel CD, Magee KL, Malafa MP. Angiogenesis correlates with metastasis in melanoma. Ann. Surg. Oncol.6(1), 70–74 (1999).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Peters BA, Diaz LA, Polyak K et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat. Med.11(3), 261–262 (2005).
  • St Croix B, Rago C, Velculescu V et al. Genes expressed in human tumor endothelium. Science289(5482), 1197–1202 (2000).
  • Feron O. Targeting the tumor vascular compartment to improve conventional cancer therapy. Trends Pharmacol. Sci.25(10), 536–542 (2004).
  • Mizukami Y, Jo WS, Duerr EM et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1a-deficient colon cancer cells. Nat. Med.11(9), 992–997 (2005).
  • Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell6(5), 447–458 (2004).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development126(14), 3047–3055 (1999).
  • Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat. Rev. Cancer7(5), 327–331 (2007).
  • van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc. Res.78(2), 203–212 (2008).
  • Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer8(8), 604–617 (2008).
  • Fukumura D, Xavier R, Sugiura T et al. Tumor induction of VEGF promoter activity in stromal cells. Cell94(6), 715–725 (1998).
  • Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res.60(22), 6253–6258 (2000).
  • Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α – hypoxia response element – VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res.60(22), 6248–6252 (2000).
  • Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J. Clin. Oncol.19(2), 577–583 (2001).
  • Lev DC, Ruiz M, Mills L, McGary EC, Price JE, Bar-Eli M. Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol. Cancer Ther.2(8), 753–763 (2003).
  • Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer8(8), 579–591 (2008).
  • Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer2(11), 826–835 (2002).
  • Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.7(11), 1194–1201 (2001).
  • Ku DD, Zaleski JK, Liu S, Brock TA. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol.265(2 Pt 2), H586–H592 (1993).
  • Mercurio AM, Lipscomb EA, Bachelder RE. Non-angiogenic functions of VEGF in breast cancer. J. Mammary Gland Biol. Neoplasia10(4), 283–290 (2005).
  • Fan F, Wey JS, McCarty MF et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene24(16), 2647–2653 (2005).
  • Gabrilovich DI, Chen HL, Girgis KR et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med.2(10), 1096–1103 (1996).
  • Pisacane AM, Risio M. VEGF and VEGFR-2 immunohistochemistry in human melanocytic naevi and cutaneous melanomas. Melanoma Res.15(1), 39–43 (2005).
  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell92(6), 735–745 (1998).
  • Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem.269(41), 25646–25654 (1994).
  • Loughna S, Sato TN. Angiopoietin and Tie signaling pathways in vascular development. Matrix Biol.20(5–6), 319–325 (2001).
  • Singh H, Milner CS, Aguilar Hernandez MM, Patel N, Brindle NP. Vascular endothelial growth factor activates the Tie family of receptor tyrosine kinases. Cell. Signal.21(8), 1346–1350 (2009).
  • Hawighorst T, Skobe M, Streit M et al. Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am. J. Pathol.160(4), 1381–1392 (2002).
  • Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME. The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.49(5), 2163–2171 (2008).
  • Maisonpierre PC, Suri C, Jones PF et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science277(5322), 55–60 (1997).
  • Findley CM, Cudmore MJ, Ahmed A, Kontos CD. VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler. Thromb. Vasc. Biol.27(12), 2619–2626 (2007).
  • Helfrich I, Edler L, Sucker A et al. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin. Cancer Res.15(4), 1384–1392 (2009).
  • Furuhashi M, Sjoblom T, Abramsson A et al. Platelet-derived growth factor production by B16 melanoma cells leads to increased pericyte abundance in tumors and an associated increase in tumor growth rate. Cancer Res.64(8), 2725–2733 (2004).
  • Hasumi Y, Klosowska-Wardega A, Furuhashi M, Ostman A, Heldin CH, Hellberg C. Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. Int. J. Cancer121(12), 2606–2614 (2007).
  • Rundhaug JE. Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med.9(2), 267–285 (2005).
  • Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell95(3), 365–377 (1998).
  • Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J. Biol. Chem.276(40), 37491–37500 (2001).
  • Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. Matrix metalloproteinases in human melanoma. J. Invest. Dermatol.115(3), 337–344 (2000).
  • Nikkola J, Vihinen P, Vuoristo MS, Kellokumpu-Lehtinen P, Kahari VM, Pyrhonen S. High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin. Cancer Res.11(14), 5158–5166 (2005).
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer2(3), 161–174 (2002).
  • Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp. Dermatol.12(2), 109–125 (2003).
  • Bergers G, Brekken R, McMahon G et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol.2(10), 737–744 (2000).
  • Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J. Cell Sci.115(Pt 17), 3427–3438 (2002).
  • Arroyo AG, Genis L, Gonzalo P, Matias-Roman S, Pollan A, Galvez BG. Matrix metalloproteinases: new routes to the use of MT1-MMP as a therapeutic target in angiogenesis-related disease. Curr. Pharm. Des.13(17), 1787–1802 (2007).
  • Chun TH, Sabeh F, Ota I et al. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell Biol.167(4), 757–767 (2004).
  • Iida J, Wilhelmson KL, Price MA et al. Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. J. Invest. Dermatol.122(1), 167–176 (2004).
  • Seftor RE, Seftor EA, Koshikawa N et al. Cooperative interactions of laminin 5 γ2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res.61(17), 6322–6327 (2001).
  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer3(6), 411–421 (2003).
  • Yana I, Sagara H, Takaki S et al. Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell. Sci.120(Pt 9), 1607–1614 (2007).
  • Sounni NE, Roghi C, Chabottaux V et al. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J. Biol. Chem.279(14), 13564–13574 (2004).
  • Sounni NE, Devy L, Hajitou A et al. MT1–MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J.16(6), 555–564 (2002).
  • Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin α v β 3 for angiogenesis. Science264(5158), 569–571 (1994).
  • Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV. Integrin signaling is critical for pathological angiogenesis. J. Exp. Med.203(11), 2495–2507 (2006).
  • Eliceiri BP, Klemke R, Stromblad S, Cheresh DA. Integrin αvβ3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol.140(5), 1255–1263 (1998).
  • Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell79(7), 1157–1164 (1994).
  • Stromblad S, Becker JC, Yebra M, Brooks PC, Cheresh DA. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin α V β 3 during angiogenesis. J. Clin. Invest.98(2), 426–433 (1996).
  • Stromblad S, Cheresh DA. Integrins, angiogenesis and vascular cell survival. Chem. Biol.3(11), 881–885 (1996).
  • Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol.155(3), 459–470 (2001).
  • Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol.156(4), 1345–1362 (2000).
  • Boudreau NJ, Varner JA. The homeobox transcription factor Hox D3 promotes integrin α5β1 expression and function during angiogenesis. J. Biol. Chem.279(6), 4862–4868 (2004).
  • Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM. Molecular pathways in bone marrow homing: dominant role of α(4)β(1) over β(2)-integrins and selectins. Blood98(8), 2403–2411 (2001).
  • Green D, Karpatkin S. Effect of cancer on platelets. In: Coagulation in Cancer (Cancer Treatment and Research Series, Volume 148). Kwaan HC, Green D (Eds). Springer, NY, USA 148(1) (2009).
  • Oku T, Tjuvajev JG, Miyagawa T et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res.58(18), 4185–4192 (1998).
  • Li Y, Wang MN, Li H et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J. Exp. Med.195(12), 1575–1584 (2002).
  • Varker KA, Biber JE, Kefauver C et al. A randomized Phase 2 trial of bevacizumab with or without daily low-dose interferon α-2β in metastatic malignant melanoma. Ann. Surg. Oncol.14(8), 2367–2376 (2007).
  • Perez DG, Suman VJ, Fitch TR et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment group study, N047A. Cancer115(1), 119–127 (2009).
  • O’Day SJ, Kim KB, Sosman JA et al. BEAM: a randomized Phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untrated advanced melanoma. Eur. J. Cancer Suppl.7(3), (2009) (Abstract 23LBA).
  • Corrie P, Marshall A, East C et al. Safety of adjuvant bevacizumab as treatment for melanoma patients at high risk of recurrence. 7th World Congress on Melanoma Vienna, Austria 12–16 May 2009.
  • Wilhelm SM, Carter C, Tang L et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64(19), 7099–7109 (2004).
  • Eisen T, Ahmad T, Flaherty KT et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer95(5), 581–586 (2006).
  • Hauschild A, Agarwala SS, Trefzer U et al. Results of a Phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol.27, 2823–2830 (2009).
  • Amaravadi R, Schuchter L, Kramer A et al. Preliminary results of a randomized Phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J. Clin. Oncol.24(18S), (2006) (Abstract 8009).
  • Amaravadi R, Schuchter L, McDermott D et al. Updated results of a randomized Phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J. Clin. Oncol.25(18S), (2007) (Abstract 8527).
  • Middleton MR, Grob JJ, Aaronson N et al. Randomized Phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol.18(1), 158–166 (2000).
  • Robert C, Lazar V, Lacroix L et al. Phase I/II study of the association of sorafenib and temozolimide (extended schedule) in patients with metastatic melanoma: a new clinical response profile with massive tumor necroses. J. Clin. Onc.27(15S), (2009) (Abstract 9062).
  • McDermott DF, Sosman JA, Gonzalez R et al. Double-blind randomized Phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 study group. J. Clin. Oncol.26(13), 2178–2185 (2008).
  • Rixe O, Bukowski RM, Michaelson MD et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a Phase II study. Lancet Oncol.8(11), 975–984 (2007).
  • Fruehauf J, Lutzky J, McDermott D et al. Axitinib (AG-013736) in patients with metastatic melanoma: a Phase II study. J. Clin. Oncol.26, (2008) (Abstract 9006).
  • Cook N, Kareclas P, Mann C et al. A Phase II study of PTK787 in patients with metastatic melanoma (CAMEL02). National Cancer Research Institute Cancer Conference (2008) (Abstract BOA20).
  • Sini P, Wyder L, Schnell C et al. The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin. Cancer Res.11(12), 4521–4532 (2005).
  • Wyman K, Spigel D, Puzanov I et al. A multicenter Phase II study of erlotinib and bevacizumab in patients with metastatic melanoma. 2007 ASCO Annual Meeting Proceedings Part I. J. Clin. Oncol.25(18S), (2007) (Abstract 8539).
  • Natale RB, Bodkin D, Govindan R et al. Vandetanib versus gefitinib in patients with advanced non-small-cell lung cancer: results from a two-part, double-blind, randomized Phase II study. J. Clin. Oncol.27(15), 2523–2529 (2009).
  • Ugurel S, Hildenbrand R, Zimpfer A et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br. J. Cancer92(8), 1398–1405 (2005).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24(26), 4340–4346 (2006).
  • Becker JC, Brocker EB, Schadendorf D, Ugurel S. Imatinib in melanoma: a selective treatment option based on KIT mutation status? J. Clin. Oncol.25(7), (2007) (Abstract E9).
  • Mizukami Y, Kohgo Y, Chung DC. Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin. Cancer Res.13(19), 5670–5674 (2007).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • King AJ, Patrick DR, Batorsky RS et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res.66(23), 11100–11105 (2006).
  • Flaherty K, Puzanov I, Sosman J et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol. 27(15S), (2009) (Abstract 9000).
  • Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS. Treatment of metastatic melanoma with an orally available inhibitor of the Ras–Raf–MAPK cascade. Cancer Res.63(18), 5669–5673 (2003).
  • Rinehart J, Adjei AA, Lorusso PM et al. Multicenter Phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J. Clin. Oncol.22(22), 4456–4462 (2004).
  • Dummer R, Robert C, Chapman PB et al. AZD6244 (ARRY-142886) vs temozolomide (TMZ) in patients (pts) with advanced melanoma: an open-label, randomized, multicenter, Phase II study. J. Clin. Oncol.26(26 Suppl.), (2008).
  • Rao RD, Winschitl HE, Allred JB et al. Phase II trial of the mTOR inhibitor everolimus (RAD-001) in metastatic melanoma. J. Clin. Oncol.24(18S), (2006) (Abstract 8043).
  • Chirivi RG, Garofalo A, Crimmin MJ et al. Inhibition of the metastatic spread and growth of B16–BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int. J. Cancer58(3), 460–464 (1994).
  • Quirt I, Bodurth A, Lohmann R et al. Phase II study of marimastat (BB-2516) in malignant melanoma: a clinical and tumor biopsy study of the National Cancer Institute of Canada Clinical Trials group. Invest. New Drugs20(4), 431–437 (2002).
  • Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer2(9), 657–672 (2002).
  • Palavalli LH, Prickett TD, Wunderlich JR et al. Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat. Genet.41(5), 518–520 (2009).
  • Pavlaki M, Zucker S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of Phase I or the termination of Phase III clinical trials. Cancer Metastasis Rev.22(2–3), 177–203 (2003).
  • Gutheil JC, Campbell TN, Pierce PR et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res.6(8), 3056–3061 (2000).
  • Schadendorf D, Algarra SM, Bastholt L et al. Immunotherapy of distant metastatic disease. Ann. Oncol.20(Suppl. 6), VI41–VI50 (2009).
  • Trikha M, Zhou Z, Nemeth JA et al. CNTO 95, a fully human monoclonal antibody that inhibits av integrins, has antitumor and antiangiogenic activity in vivo.Int. J. Cancer110(3), 326–335 (2004).
  • Mullamitha SA, Ton NC, Parker GJ et al. Phase I evaluation of a fully human anti-αv integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin. Cancer Res.13(7), 2128–2135 (2007).
  • Loquai C, Pavlick A, Lawson D et al. Randomized Phase II study of the safety and efficacy of a human anti-αv integrin monoclonal antibody (CNTO 95) alone and in combination with dacarbazine in patients with stage IV metastatic melanoma: 12-month results. J. Clin. Oncol.27(15 Suppl.), (2009).
  • Tentori L, Dorio AS, Muzi A et al. The integrin antagonist cilengitide increases the antitumor activity of temozolomide against malignant melanoma. Oncol. Rep.19(4), 1039–1043 (2008).
  • Kim K, Diwan A, Papadopoulos N et al. A randomized Phase II study of EMD 121974 in patients (pts) with metastatic melanoma (MM). J. Clin. Oncol.25(18S ), (2007) (Abstract 8548).
  • Kuwada SK. Drug evaluation: volociximab, an angiogenesis-inhibiting chimeric monoclonal antibody. Curr. Opin. Mol. Ther.9(1), 92–98 (2007).
  • Eggermont AM, Suciu S, Santinami M et al. Adjuvant therapy with pegylated interferon α-2β versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised Phase III trial. Lancet372(9633), 117–126 (2008).
  • Bouwhuis MG, Suciu S, Collette S et al. Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J. Natl Cancer Inst.101(12), 869–877 (2009).
  • Sondak VK, Flaherty LE. Adjuvant therapy of melanoma: is pegylated interferon α-2β what we've been waiting for? Lancet372(9633), 89–90 (2008).
  • Eggermont AM, Testori A, Marsden J et al. Utility of adjuvant systemic therapy in melanoma. Ann. Oncol.20(Suppl. 6), VI30–VI34 (2009).
  • Dinney CP, Bielenberg DR, Perrotte P et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-α administration. Cancer Res.58(4), 808–814 (1998).
  • Brouty-Boye D, Zetter BR. Inhibition of cell motility by interferon. Science208(4443), 516–518 (1980).
  • Chaplin DJ, Horsman MR, Siemann DW. Current development status of small-molecule vascular disrupting agents. Curr. Opin. Investig. Drugs7(6), 522–528 (2006).
  • Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat. Rev. Cancer5(6), 423–435 (2005).
  • Dome B, Hendrix MJ, Paku S, Tovari J, Timar J. Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am. J. Pathol.170(1), 1–15 (2007).
  • Patnaik A, Chiorean E, Tolcher A et al. EZN-2968, a novel hypoxia-inducible factor-1α (HIF-1α) messenger ribonucleic acid (mRNA) antagonist: results of a Phase I, pharmacokinetic (PK), dose-escalation study of daily administration in patients (pts) with advanced malignancies. J. Clin. Oncol.27(15s), (2009) (Abstract 2564).
  • Hewitson KS, Schofield CJ. The HIF pathway as a therapeutic target. Drug Discov. Today9(16), 704–711 (2004).
  • Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today12(19–20), 853–859 (2007).
  • Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer2(10), 727–739 (2002).
  • Gourley M, Williamson JS. Angiogenesis: new targets for the development of anticancer chemotherapies. Curr. Pharm. Des.6(4), 417–439 (2000).
  • Shojaei F, Ferrara N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res.68(14), 5501–5504 (2008).
  • Paez-Ribes M, Allen E, Hudock J et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15(3), 220–231 (2009).
  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15(3), 232–239 (2009).
  • Jain RK, Duda DG, Willett CG et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol.6(6), 327–338 (2009).
  • Jilaveanu L, Zito C, Lee SJ et al. Expression of sorafenib targets in melanoma patients treated with carboplatin, paclitaxel and sorafenib. Clin. Cancer Res.15(3), 1076–1085 (2009).
  • Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer6(11), 835–845 (2006).
  • Bono A, Quarna J, Marighetti P et al. Taxanes induce a rapid mobilization of different populations of circulating endothelial progenitors by SDF-1 modulation in cancer patients. 50th ASH Annual Meeting and Exposition (2008) (Abstract 1885).
  • Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat. Med.9(6), 669–676 (2003)
  • Gonzalez-Cao M, Viteri S, Diaz-Lagares A et al. Preliminary results of the combination of bevacizumab and weekly paclitaxel in advanced melanoma. Oncology74, 12–16 (2008).
  • Peyton J, Spigel DR, Burris HA et al. Phase II trial of bevacizumab and everolimus in the treatment of patients with metastatic melanoma: preliminary results. J. Clin. Oncol.27, (2009) (Abstract 9027).
  • Boasberg P, Cruickshank S, Hamid O, O’Day S, Weber R, Spitler L. Nab-paclitaxel and bevacizumab as first-line therapy in patients with unresectable stage III and IV melanoma. J. Clin. Oncol.27, (2009) (Abstract 9061).
  • Munzone E, Testori A, Minchella I et al. A Phase II trial of dacarbazine (DTIC) and bevacizumab in patients with metastatic melanoma. J. Clin. Oncol.25, (2007) (Abstract 8579).
  • Wyman K, Spigel D, Puzanov I et al. A multicenter Phase II study of erlotinib and bevacizumab in patients with metastatic melanoma. J. Clin. Oncol.25, 18S (2007) (Abstract 8539).
  • McClay E, Bessudo A, Frakes L et al. A Phase I/II trial of the combination of bevacizumab, oxaliplatin, and sorafenib in patients with metastatic melanoma. J. Clin. Oncol.26 (2008) (Abstract 20020).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.