265
Views
40
CrossRef citations to date
0
Altmetric
Review

Treatment of malignant gliomas with TGF-β2 antisense oligonucleotides

, &
Pages 1663-1674 | Published online: 10 Jan 2014

References

  • Morokoff AP, Novak U. Targeted therapy for malignant gliomas. J. Clin. Neurosci.11(8), 807–818 (2004).
  • Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther.1(5), 347–355 (2002).
  • Hartmann G, Weeratna RD, Ballas ZK et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol.164(3), 1617–1624 (2000).
  • Agrawal S, Kandimalla ER. Antisense and/or immunostimulatory oligonucleotide therapeutics. Curr. Cancer Drug Targets1(3), 197–209 (2001).
  • Barchet W, Wimmenauer V, Schlee M, Hartmann G. Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr. Opin. Immunol.20(4), 389–395 (2008).
  • Krieg AM. Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochim. Biophys. Acta1489(1), 107–116 (1999).
  • Chavany C, Connell Y, Neckers L. Contribution of sequence and phosphorothioate content to inhibition of cell growth and adhesion caused by c-myc antisense oligomers. Mol. Pharmacol.48(4), 738–746 (1995).
  • Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF. A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res.25(24), 5010–5016 (1997).
  • Ho SP, Bao Y, Lesher T et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat. Biotechnol.16(1), 59–63 (1998).
  • Stull RA, Taylor LA, Szoka FC Jr. Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices. Nucleic Acids Res.20(13), 3501–3508 (1992).
  • Hartmann G, Krieg AM. CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther.6(5), 893–903 (1999).
  • Dean NM, McKay R. Inhibition of protein kinase C-α expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc. Natl Acad. Sci. USA91(24), 11762–11766 (1994).
  • Brysch W, Schlingensiepen KH. Design and application of antisense oligonucleotides in cell culture, in vivo, and as therapeutic agents. Cell. Mol. Neurobiol.14(5), 557–568 (1994).
  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al. Targeted tumor therapy with the TGF-β 2 antisense compound AP 12009. Cytokine Growth Factor Rev.17(1–2), 129–139 (2006).
  • Jachimczak P, Hessdorfer B, Fabel-Schulte K et al. Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int. J. Cancer65(3), 332–337 (1996).
  • Schlingensiepen R, Goldbrunner M, Szyrach MN et al. Intracerebral and intrathecal infusion of the TGF-β 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides15(2), 94–104 (2005).
  • Wang H, Prasad G, Buolamwini JK, Zhang R. Antisense anticancer oligonucleotide therapeutics. Curr. Cancer Drug Targets1(3), 177–196 (2001).
  • Jason TL, Koropatnick J, Berg RW. Toxicology of antisense therapeutics. Toxicol. Appl. Pharmacol.201(1), 66–83 (2004).
  • Bottner M, Krieglstein K, Unsicker K. The transforming growth factor-βs: structure, signaling, and roles in nervous system development and functions. J. Neurochem.75(6), 2227–2240 (2000).
  • Massague J. TGF-β signal transduction. Annu. Rev. Biochem.67, 753–791 (1998).
  • Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-β activation. J. Cell. Sci.116(Pt 2), 217–224 (2003).
  • Jennings MT, Maciunas RJ, Carver R et al. TGF β 1 and TGF β 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int. J. Cancer49(1), 129–139 (1991).
  • Tang B, Vu M, Booker T et al. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest.112(7), 1116–1124 (2003).
  • Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA100(15), 8621–8623 (2003).
  • Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet.29(2), 117–129 (2001).
  • Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev.12(1), 22–29 (2002).
  • Voges J, Reszka R, Gossmann A et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann. Neurol.54(4), 479–487 (2003).
  • Seoane J. Escaping from the TGFβ anti-proliferative control. Carcinogenesis27(11), 2148–2156 (2006).
  • Nickl-Jockschat T, Arslan F, Doerfelt A et al. An imbalance between Smad and MAPK pathways is responsible for TGF-β tumor promoting effects in high-grade gliomas. Int. J. Oncol.30(2), 499–507 (2007).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev.21(2), 128–151 (1995).
  • Fontana A, Bodmer S, Frei K, Malipiero U, Siepl C. Expression of TGF-β 2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found. Symp.157, 232–238 (1991).
  • Thomas DA, Massague J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell8(5), 369–380 (2005).
  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006).
  • Siepl C, Bodmer S, Frei K et al. The glioblastoma-derived T cell suppressor factor/transforming growth factor-β 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur. J. Immunol.18(4), 593–600 (1988).
  • Kehrl JH, Roberts AB, Wakefield LM et al. Transforming growth factor β is an important immunomodulatory protein for human B lymphocytes. J. Immunol.137(12), 3855–3860 (1986).
  • Kehrl JH, Wakefield LM, Roberts AB et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med.163(5), 1037–1050 (1986).
  • Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor β 2. J. Neurosurg.71(2), 211–217 (1989).
  • Fontana A, Constam DB, Frei K, Malipiero U, Pfister HW. Modulation of the immune response by transforming growth factor β. Int. Arch. Allergy Immunol.99(1), 1–7 (1992).
  • Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN. Effect of the expression of transforming growth factor-β 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J. Neurosurg.76(5), 799–804 (1992).
  • Jachimczak P, Bogdahn U, Schneider J et al. The effect of transforming growth factor-β 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J. Neurosurg.78(6), 944–951 (1993).
  • Hau P, Jachimczak P, Schlingensiepen R et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to Phase I/II studies. Oligonucleotides17(2), 201–212 (2007).
  • Biollaz G, Bernasconi L, Cretton C et al. Site-specific anti-tumor immunity: differences in DC function, TGF-β production and numbers of intratumoral Foxp3+ Treg. Eur. J. Immunol.39(5), 1323–1333 (2009).
  • Liu Y, Wang Q, Kleinschmidt-DeMasters BK et al. TGF-β2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. J. Neurooncol.81(2), 149–162 (2007).
  • Schneider T, Becker A, Ringe K et al. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J. Neuroimmunol.195(1–2), 21–27 (2008).
  • Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech.52(4), 401–410 (2001).
  • Bruna A, Darken RS, Rojo F et al. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell11(2), 147–160 (2007).
  • Uhl M, Aulwurm S, Wischhusen J et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res.64(21), 7954–7961 (2004).
  • Paulus W, Baur I, Huettner C et al. Effects of transforming growth factor-β 1 on collagen synthesis, integrin expression, adhesion and invasion of glioma cells. J. Neuropathol. Exp. Neurol.54(2), 236–244 (1995).
  • Arslan F, Bosserhoff AK, Nickl-Jockschat T et al. The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-β2. Br. J. Cancer96(10), 1560–1568 (2007).
  • Wesolowska A, Kwiatkowska A, Slomnicki L et al. Microglia-derived TGF-β as an important regulator of glioblastoma invasion – an inhibition of TGF-β-dependent effects by shRNA against human TGF-β type II receptor. Oncogene27(7), 918–930 (2008).
  • Pepper MS. Transforming growth factor-β: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev.8(1), 21–43 (1997).
  • Machein MR, Plate KH. Role of VEGF in developmental angiogenesis and in tumor angiogenesis in the brain. Cancer Treat Res.117, 191–218 (2004).
  • Stiles JD, Ostrow PT, Balos LL et al. Correlation of endothelin-1 and transforming growth factor β 1 with malignancy and vascularity in human gliomas. J. Neuropathol. Exp. Neurol.56(4), 435–439 (1997).
  • Koochekpour S, Pilkington GJ. Vascular and perivascular GD3 expression in human glioma. Cancer Lett.104(1), 97–102 (1996).
  • Penuelas S, Anido J, Prieto-Sanchez RM et al. TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell15(4), 315–327 (2009).
  • Lebedeva IV, Stein CA. Antisense oligonucleotides in cancer: recent advances. BioDrugs13(3), 195–216 (2000).
  • Massague J. TGFβ in cancer. Cell134(2), 215–230 (2008).
  • Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-β signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov.3(12), 1011–1022 (2004).
  • Flanders KC, Ren RF, Lippa CF. Transforming growth factor-βs in neurodegenerative disease. Prog. Neurobiol.54(1), 71–85 (1998).
  • Kjellman C, Olofsson SP, Hansson O et al. Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int. J. Cancer89(3), 251–258 (2000).
  • Merzak A, McCrea S, Koocheckpour S, Pilkington GJ. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor β 1. Br. J. Cancer70(2), 199–203 (1994).
  • Platten M, Wick W, Wild-Bode C et al. Transforming growth factors b(1) (TGF-β(1)) and TGF-β(2) promote glioma cell migration via up-regulation of a(V)b(3) integrin expression. Biochem. Biophys. Res. Commun.268(2), 607–611 (2000).
  • Wrann M, Bodmer S, de Martin R et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kD protein closely related to transforming growth factor-β. EMBO J.6(6), 1633–1636 (1987).
  • Bodmer S, Strommer K, Frei K et al. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J. Immunol.143(10), 3222–3229 (1989).
  • Jachimczak P, Fabel-Schulte K, Hessdorfer B et al. Transforming growth factor-β-mediated regulation of human peripheral blood mononuclear cell proliferation as detected with phosphorothioate antisense oligodeoxynucleotides. Cell. Immunol.165(1), 125–133 (1995).
  • Bellone G, Carbone A, Tibaudi D et al. Differential expression of transforming growth factors-β1, -β2 and -β3 in human colon carcinoma. Eur. J. Cancer37(2), 224–233 (2001).
  • Badruddoja MA, Black KL. Improving the delivery of therapeutic agents to CNS neoplasms: a clinical review. Front. Biosci.11, 1466–1478 (2006).
  • Bobo RH, Laske DW, Akbasak A et al. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA91(6), 2076–2080 (1994).
  • Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg.82(6), 1021–1029 (1995).
  • Patel SJ, Shapiro WR, Laske DW et al. Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery56(6), 1243–1252 (2005).
  • Mamot C, Nguyen JB, Pourdehnad M et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J. Neurooncol.68(1), 1–9 (2004).
  • Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR. Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J. Neurosurg.99(5), 893–898 (2003).
  • Nguyen JB, Sanchez-Pernaute R, Cunningham J, Bankiewicz KS. Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport12(9), 1961–1964 (2001).
  • Saito R, Bringas JR, Panner A et al. Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res.64(19), 6858–6862 (2004).
  • Laske DW, Morrison PF, Lieberman DM et al. Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J. Neurosurg.87(4), 586–594 (1997).
  • Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-α and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol.65(1), 27–35 (2003).
  • Mardor Y, Rahav O, Zauberman Y et al. Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res.65(15), 6858–6863 (2005).
  • Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res.36(12), 4158–4171 (2008).
  • Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J. Neurosurg.88(1), 1–10 (1998).
  • Fakhrai H, Mantil JC, Liu L et al. Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther.13(12), 1052–1060 (2006).
  • Akhurst RJ. Large- and small-molecule inhibitors of transforming growth factor-β signaling. Curr. Opin. Investig. Drugs7(6), 513–521 (2006).
  • Wick W, Naumann U, Weller M. Transforming growth factor-β: a molecular target for the future therapy of glioblastoma. Curr. Pharm. Des.12(3), 341–349 (2006).
  • Bogdahn U, Hau P, Olyushin V et al. Targeted therapy with AP 12009 in recurrent or refractory glioblastoma patients: results of a Phase IIb study. J. Clin. Oncol.26(Suppl.), 2018 (2008).
  • Bogdahn U, Mahapatra A, Olyushin V et al. Results of a Phase IIb active controlled study with AP 12009 for patients with recurrent or refractory anaplastic astrocytoma. J. Clin. Oncol.26(Suppl.), 2076 (2008).
  • Grossman SA, Alavi JB, Supko JG et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-α delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro. Oncol.7(1), 32–40 (2005).
  • Andrews DW, Resnicoff M, Flanders AE et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol.19(8), 2189–2200 (2001).
  • Carpentier A, Laigle-Donadey F, Zohar S et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol.8(1), 60–66 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.