87
Views
16
CrossRef citations to date
0
Altmetric
Review

Dendritic cell vaccination as a treatment modality for melanoma

&
Pages 1631-1642 | Published online: 10 Jan 2014

References

  • Hall HI, Miller DR, Rogers JD, Bewerse B. Update on the incidence and mortality from melanoma in the United States. J. Am. Acad. Dermatol.40(1), 35–42 (1999).
  • Purdue MP, Freeman LE, Anderson WF, Tucker MA. Recent trends in incidence of cutaneous melanoma among US Caucasian young adults. J. Invest. Dermatol.128(12), 2905–2908 (2008).
  • Cokkinides V, Weinstock M, Glanz K, Albano J, Ward E, Thun M. Trends in sunburns, sun protection practices, and attitudes toward sun exposure protection and tanning among US adolescents, 1998–2004. Pediatrics118(3), 853–864 (2006).
  • Lazovich D, Forster J. Indoor tanning by adolescents: prevalence, practices and policies. Eur. J. Cancer41(1), 20–27 (2005).
  • International Agency for Research on Cancer Working Group on artificial ultraviolet (UV) light and skin cancer. The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review. Int. J. Cancer120(5), 1116–1122 (2007).
  • Cote TR, Sobin LH. Primary melanomas of the esophagus and anorectum: epidemiologic comparison with melanoma of the skin. Melanoma Res.19(1), 58–60 (2009).
  • Jasser SA, Blask DE, Brainard GC. Light during darkness and cancer: relationships in circadian photoreception and tumor biology. Cancer Causes Control17(4), 515–523 (2006).
  • Garbe C, Buttner P, Bertz J et al. Primary cutaneous melanoma. Identification of prognostic groups and estimation of individual prognosis for 5093 patients. Cancer75(10), 2484–2491 (1995).
  • Eigentler TK, Caroli UM, Radny P, Garbe C. Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. Lancet Oncol.4(12), 748–759 (2003).
  • Balch CM, Soong SJ, Gershenwald JE et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19(16), 3622–3634 (2001).
  • Kim CJ, Dessureault S, Gabrilovich D, Reintgen DS, Slingluff CL Jr. Immunotherapy for melanoma. Cancer Control9(1), 22–30 (2002).
  • Nathanson. Spontaneous regression of malignant melanoma: a review of the literature on incidence, clinical features, and possible mechanisms. Natl Cancer Inst. Monogr.44, 67–76 (1976).
  • Eggermont AM, Schadendorf D. Melanoma and immunotherapy. Hematol. Oncol. Clin. North Am.23(3), 547–564, ix–x (2009).
  • Wheatley K, Ives N, Hancock B, Gore M, Eggermont A, Suciu S. Does adjuvant interferon-α for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat. Rev.29(4), 241–252 (2003).
  • Ascierto PA, Kirkwood JM. Adjuvant therapy of melanoma with interferon: lessons of the past decade. J. Transl. Med.6, 62 (2008).
  • Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon α-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14(1), 7–17 (1996).
  • Kirkwood JM, Ibrahim JG, Sondak VK et al. High- and low-dose interferon α-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol.18(12), 2444–2458 (2000).
  • Kirkwood JM, Ibrahim JG, Sosman JA et al. High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB–III melanoma: results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol.19(9), 2370–2380 (2001).
  • Kirkwood JM, Bender C, Agarwala S et al. Mechanisms and management of toxicities associated with high-dose interferon α-2b therapy. J. Clin. Oncol.20(17), 3703–3718 (2002).
  • Wheatley K, Ives N, Eggermont A et al. Interferon-α as adjuvant therapy for melanoma: an individual patient data meta-analysis of randomised trials. Proc. Am. Soc. Clin. Oncol.25, 478S (2007).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Rosenberg SA, Yang JC, Topalian SL et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA271(12), 907–913 (1994).
  • Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM. Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N. Engl. J. Med.318(24), 1557–1563 (1988).
  • Bouwhuis MG, Suciu S, Collette S et al. Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J. Natl Cancer Inst.101(12), 869–877 (2009).
  • Agarwala SS, Neuberg D, Park Y, Kirkwood JM. Mature results of a Phase III randomized trial of bacillus Calmette–Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer stage I–III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer100(8), 1692–1698 (2004).
  • Green DS, Bodman-Smith MD, Dalgleish AG, Fischer MD. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br. J. Dermatol.156(2), 337–345 (2007).
  • Green DS, Dalgleish AG, Belonwu N, Fischer MD, Bodman-Smith MD. Topical imiquimod and intralesional interleukin-2 increase activated lymphocytes and restore the Th1/Th2 balance in patients with metastatic melanoma. Br. J. Dermatol.159(3), 606–614 (2008).
  • Camacho LH, Antonia S, Sosman J et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol.27(7), 1075–1081 (2009).
  • Weber JS, O’Day S, Urba W et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol.26(36), 5950–5956 (2008).
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Ebner S, Ehammer Z, Holzmann S et al. Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int. Immunol.16(6), 877–887 (2004).
  • Nijman HW, Kleijmeer MJ, Ossevoort MA et al. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J. Exp. Med.182(1), 163–174 (1995).
  • Pierre P, Turley SJ, Gatti E et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature388(6644), 787–792 (1997).
  • Ackerman AL, Kyritsis C, Tampe R, Cresswell P. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc. Natl Acad. Sci. USA100(22), 12889–12894 (2003).
  • Fonteneau JF, Larsson M, Bhardwaj N. Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Curr. Opin. Immunol.14(4), 471–477 (2002).
  • Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER–phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature425(6956), 397–402 (2003).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Matzinger P. The danger model: a renewed sense of self. Science296(5566), 301–305 (2002).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Lechmann M, Berchtold S, Hauber J, Steinkasserer A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol.23(6), 273–275 (2002).
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med.182(2), 389–400 (1995).
  • Lanzavecchia A. Immunology. Licence to kill. Nature393(6684), 413–414 (1998).
  • Fernandez NC, Lozier A, Flament C et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med.5(4), 405–411 (1999).
  • Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol.4(6), 579–585 (2003).
  • Steinbrink K, Mahnke K, Grabbe S, Enk AH, Jonuleit H. Myeloid dendritic cell: from sentinel of immunity to key player of peripheral tolerance? Hum. Immunol.70(5), 289–293 (2009).
  • Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, Steinman RM. High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med.186(5), 665–672 (1997).
  • Schuler-Thurner B, Schultz ES, Berger TG et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med.195(10), 1279–1288 (2002).
  • Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res.61(17), 6451–6458 (2001).
  • Overwijk WW, Theoret MR, Finkelstein SE et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med.198(4), 569–580 (2003).
  • Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3), 328–332 (1998).
  • Thurner B, Haendle I, Roder C et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190(11), 1669–1678 (1999).
  • Wiedemann A, Depoil D, Faroudi M, Valitutti S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc. Natl Acad. Sci. USA103(29), 10985–10990 (2006).
  • Shankaran V, Ikeda H, Bruce AT et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410(6832), 1107–1111 (2001).
  • Chiao EY, Krown SE. Update on non-acquired immunodeficiency syndrome-defining malignancies. Curr. Opin. Oncol.15(5), 389–397 (2003).
  • Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer93(2), 243–251 (2001).
  • Schadendorf D, Ugurel S, Schuler-Thurner B et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol.17(4), 563–570 (2006).
  • Luongo V, Pirozzi G, Caraco C et al. HLA allele frequency and clinical outcome in Italian patients with cutaneous melanoma. Tissue Antigens64(1), 84–87 (2004).
  • Sosman JA, Unger JM, Liu PY et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: impact of HLA class I antigen expression on outcome. J. Clin. Oncol.20(8), 2067–2075 (2002).
  • Smith CM, Wilson NS, Waithman J et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat. Immunol.5(11), 1143–1148 (2004).
  • Slingluff CL Jr, Petroni GR, Yamshchikov GV et al. Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in granulocyte–macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol.21(21), 4016–4026 (2003).
  • Tuettenberg A, Becker C, Huter E, Knop J, Enk AH, Jonuleit H. Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. Int. J. Cancer118(10), 2617–2627 (2006).
  • Fontana R, Bregni M, Cipponi A et al. Peripheral blood lymphocytes genetically modified to express the self/tumor antigen MAGE-A3 induce anti-tumor immune responses in cancer patients. Blood113(8), 1651–1660 (2009).
  • de Vries IJ, Lesterhuis WJ, Scharenborg NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res.9(14), 5091–5100 (2003).
  • Reid CD, Stackpoole A, Meager A, Tikerpae J. Interactions of tumor necrosis factor with granulocyte–macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J. Immunol.149(8), 2681–2688 (1992).
  • Caux C, Vanbervliet B, Massacrier C et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF + TNF α. J. Exp. Med.184(2), 695–706 (1996).
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med.179(4), 1109–1118 (1994).
  • Rossi G, Heveker N, Thiele B, Gelderblom H, Steinbach F. Development of a Langerhans cell phenotype from peripheral blood monocytes. Immunol. Lett.31(2), 189–197 (1992).
  • Dauer M, Obermaier B, Herten J et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol.170(8), 4069–4076 (2003).
  • Jonuleit H, Kuhn U, Muller G et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol.27(12), 3135–3142 (1997).
  • Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol.6(2), 163–170 (2005).
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q et al. α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res.64(17), 5934–5937 (2004).
  • Trepiakas R, Pedersen AE, Met O, Hansen MH, Berntsen A, Svane IM. Comparison of α-type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine26(23), 2824–2832 (2008).
  • O’Rourke MG, Johnson M, Lanagan C et al. Durable complete clinical responses in a Phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother.52(6), 387–395 (2003).
  • Dillman RO, Selvan SR, Schiltz PM et al. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific anti-tumor vaccines in patients with metastatic melanoma: final report. Cancer Biother. Radiopharm.24(3), 311–319 (2009).
  • von Euw EM, Barrio MM, Furman D et al. A Phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 1082 promoter genotype as predictor of disease progression. J. Transl. Med.6, 6 (2008).
  • Hersey P, Halliday GM, Farrelly ML, DeSilva C, Lett M, Menzies SW. Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol. Immunother.57(7), 1039–1051 (2008).
  • Redman BG, Chang AE, Whitfield J et al. Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma. J. Immunother.31(6), 591–598 (2008).
  • Yewdell JW, Norbury CC, Bennink JR. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv. Immunol.73, 1–77 (1999).
  • Van Tendeloo VF, Ponsaerts P, Lardon F et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood98(1), 49–56 (2001).
  • Caruso DA, Orme LM, Neale AM et al. Results of a Phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol.6(3), 236–246 (2004).
  • Su Z, Dannull J, Heiser A et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res.63(9), 2127–2133 (2003).
  • Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev.199, 251–263 (2004).
  • Kyte JA, Mu L, Aamdal S et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.13(10), 905–918 (2006).
  • Wei Y, Sticca RP, Holmes LM et al. Dendritoma vaccination combined with low dose interleukin-2 in metastatic melanoma patients induced immunological and clinical responses. Int. J. Oncol.28(3), 585–593 (2006).
  • Eggert AA, Schreurs MW, Boerman OC et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res.59(14), 3340–3345 (1999).
  • Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res.59(1), 56–58 (1999).
  • De Vries IJ, Krooshoop DJ, Scharenborg NM et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res.63(1), 12–17 (2003).
  • Ridolfi R, Riccobon A, Galassi R et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J. Transl. Med.2(1), 27 (2004).
  • Barratt-Boyes SM, Watkins SC, Finn OJ. In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J. Immunol.158(10), 4543–4547 (1997).
  • Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol.166(6), 4254–4259 (2001).
  • Serody JS, Collins EJ, Tisch RM, Kuhns JJ, Frelinger JA. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J. Immunol.164(9), 4961–4967 (2000).
  • James K, Eisenhauer E, Christian M et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J. Natl Cancer Inst.91(6), 523–528 (1999).
  • Engelhard VH, Bullock TN, Colella TA, Sheasley SL, Mullins DW. Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol. Rev.188, 136–146 (2002).
  • Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit. Rev. Immunol.24(4), 267–296 (2004).
  • Velculescu VE, Madden SL, Zhang L et al. Analysis of human transcriptomes. Nat. Genet.23(4), 387–388 (1999).
  • Thomas J, Liu T, Cotter MA et al. Melanocyte expression of survivin promotes development and metastasis of UV-induced melanoma in HGF-transgenic mice. Cancer Res.67(11), 5172–5178 (2007).
  • Mittelman A, Chen ZJ, Yang H, Wong GY, Ferrone S. Human high molecular weight melanoma-associated antigen (HMW-MAA) mimicry by mouse anti-idiotypic monoclonal antibody MK2–23: induction of humoral anti-HMW-MAA immunity and prolongation of survival in patients with stage IV melanoma. Proc. Natl Acad. Sci. USA89(2), 466–470 (1992).
  • Li F, Ambrosini G, Chu EY et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature396(6711), 580–584 (1998).
  • Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science310(5753), 1499–1504 (2005).
  • Otto K, Andersen MH, Eggert A et al. Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine23(7), 884–889 (2005).
  • Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC. Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol. Immunother.55(10), 1294–1298 (2006).
  • Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193(11), 1285–1294 (2001).
  • Liyanage UK, Moore TT, Joo HG et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol.169(5), 2756–2761 (2002).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer73(3), 309–316 (1997).
  • Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol.159(10), 4772–4780 (1997).
  • Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell. Biol.80(5), 477–483 (2002).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated anti-tumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Mahnke K, Schonfeld K, Fondel S et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer120(12), 2723–2733 (2007).
  • Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother.28(6), 582–592 (2005).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov.5(6), 471–484 (2006).
  • Pashenkov M, Goess G, Wagner C et al. Phase II trial of a Toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol.24(36), 5716–5724 (2006).
  • West MA, Wallin RP, Matthews SP et al. Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling. Science305(5687), 1153–1157 (2004).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115(3), 739–746 (2005).
  • Brunet JF, Denizot F, Luciani MF et al. A new member of the immunoglobulin superfamily – CTLA-4. Nature328(6127), 267–270 (1987).
  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv. Immunol.90, 297–339 (2006).
  • Ribas A. Clinical trials with tumor antigen genetically modified dendritic cells. Semin. Oncol.32(6), 556–562 (2005).
  • Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol.23(35), 8968–8977 (2005).
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182(2), 459–465 (1995).
  • Maker AV, Phan GQ, Attia P et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a Phase I/II study. Ann. Surg. Oncol.12(12), 1005–1016 (2005).
  • Ribas A, Hanson DC, Noe DA et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist12(7), 873–883 (2007).
  • Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene27(45), 5904–5912 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.