68
Views
7
CrossRef citations to date
0
Altmetric
Review

Placental ischemia and breast cancer risk after preeclampsia: tying the knot

, &
Pages 671-681 | Published online: 10 Jan 2014

References

  • Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol. Rev.15(1), 36–47 (1993).
  • Ekbom A, Hsieh CC, Lipworth L, Adami HQ, Trichopoulos D. Intrauterine environment and breast cancer risk in women: a population-based study. JNCI J. Natl Cancer Inst.89(1), 71–76 (1997).
  • Troisi R, Weiss HA, Hoover RN et al. Pregnancy characteristics and maternal risk of breast cancer. Epidemiology9(6), 641–647 (1998).
  • Innes KE, Byers TE. Preeclampsia and breast cancer risk. Epidemiology10(6), 722–732 (1999).
  • Hubel CA, Snaedal S, Ness RB et al. Dyslipoproteinaemia in postmenopausal women with a history of eclampsia. BJOG107(6), 776–784 (2000).
  • Innes KE , Byers TE. Smoking during pregnancy and breast cancer risk in very young women (United States). Cancer Causes Control12(2), 179–185 (2001).
  • Chambers JC, Fusi L, Malik IS, Haskard DO, De Swiet M, Kooner JS. Association of maternal endothelial dysfunction with preeclampsia. JAMA285(12), 1607–1612 (2001).
  • Wilson BJ, Watson MS, Prescott GJ et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ326(7394), 845 (2003).
  • Innes KE, Byers TE. First pregnancy characteristics and subsequent breast cancer risk among young women. Int. J. Cancer112(2), 306–311 (2004).
  • Cnattingius S, Torrang A, Ekbom A, Granath F, Petersson G, Lambe M. Pregnancy characteristics and maternal risk of breast cancer. JAMA294(19), 2474–2480 (2005).
  • Wikstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG112(11), 1486–1491 (2005).
  • Harskamp RE, Zeeman GG. Preeclampsia: at risk for remote cardiovascular disease. Am. J. Med. Sci.334(4), 291–295 (2007).
  • Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ335(7627), 974 (2007).
  • Gilbert JS, Nijland MJ, Knoblich P. Placental ischemia and cardiovascular dysfunction in preeclampsia and beyond: making the connections. Expert Rev. Cardiovasc. Ther.6(10), 1367–1377 (2008).
  • Craici I, Wagner S, Garovic VD. Review: preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther. Adv. Cardiovasc. Dis.2(4), 249–259 (2008).
  • Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N. Engl. J. Med.359(8), 800–809 (2008).
  • Aagaard-Tillery KM, Stoddard GJ, Holmgren C et al. Preeclampsia and subsequent risk of cancer in Utah. Am. J. Obstet. Gynecol.195(3), 691–699 (2006).
  • Polednak AP, Janerich DT. Characteristics of 1st pregnancy in relation to early breast-cancer – a case–control study. J. Reprod. Med.28(5), 314–318 (1983).
  • Innes K, Byers T, Schymura M. Birth characteristics and subsequent risk for breast cancer in very young women. Am. J. Epidemiol.152(12), 1121–1128 (2000).
  • Vatten LJ, Forman MR, Nilsen TIL, Barrett JC, Romundstad PR. The negative association between pre-eclampsia and breast cancer risk may depend on the offspring’s gender. Br. J. Cancer96(9), 1436–1438 (2007).
  • Pettersson A, Richiardi L, Cnattingius S, Kaijser M, Akre O. Gestational hypertension, preeclampsia, and risk of testicular cancer. Cancer Res.68(21), 8832–8836 (2008).
  • Forman MR, Cantwell MM, Ronckers C, Zhang Y. Through the looking glass at early-life exposures and breast cancer risk. Cancer Invest.23(7), 609–624 (2005).
  • Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO. Transient increase in the risk of breast cancer after giving birth. N. Engl. J. Med.331(1), 5–9 (1994).
  • Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature303(5920), 767–770 (1983).
  • MacMahon B, Cole P, Lin TM et al. Age at first birth and breast cancer risk. Bull. World Health Organ.43(2), 209–221 (1970).
  • Mogren I, Stenlund H, Hogberg U. Long-term impact of reproductive factors on the risk of cervical, endometrial, ovarian and breast cancer. Acta Oncol.40(7), 849–854 (2001).
  • Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH. Breast differentiation and its implication in cancer prevention. Clin. Cancer Res11(2 Pt 2), 931s–936s (2005).
  • Calderon-Margalit R, Friedlander Y, Yanetz R et al. Preeclampsia and subsequent risk of cancer: update from the Jerusalem Perinatal Study. Am. J. Obstet. Gynecol.200(1), 63.E1–E5 (2009).
  • Mogren I, Stenlund H, Högberg U. Long-term impact of reproductive factors on the risk of cervical, endometrial, ovarian and breast cancer. Acta Oncologica40(7), 849–854 (2001).
  • Paltiel O, Friedlander Y, Tiram E, Barchana M, Xue X, Harlap S. Cancer after pre-eclampsia: follow up of the Jerusalem perinatal study cohort. BMJ328(7445), 919 (2004).
  • Gilbert JS, Babcock SA, Granger JP. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble Fms-like tyrosine kinase-1 expression. Hypertension50, 1142–1147 (2007).
  • Gilbert JS, Gilbert SAB, Arany M, Granger JP. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension53(2), 399–403 (2009).
  • Makris A, Thornton C, Thompson J et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int.71(10), 977–984 (2007).
  • Maynard SE, Min JY, Merchan J et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest.111(5), 649–658 (2003).
  • Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc. Res.75(1), 1–8 (2008).
  • Venkatesha S, Toporsian M, Lam C et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med.12(6), 642–649 (2006).
  • Maynard S, Epstein FH, Karumanchi SA. Preeclampsia and angiogenic imbalance. Ann. Rev. Med.59(1), 61–78 (2008).
  • Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet365(9461), 785–799 (2005).
  • Roberts JM, Pearson G, Cutler J, Lindheimer M. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertension41(3), 437–445 (2003).
  • Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am. J.Physiol. Heart Circ. Physiol.294(2), H541–H550 (2008).
  • Gilbert JS, Cox LA, Mitchell G, Nijland MJ. Nutrient-restricted fetus and the cardio-renal connection in hypertensive offspring. Expert Rev. Cardiovasc. Ther.4(2), 227–237 (2006).
  • Gilbert JS, Nijland MJ. Sex differences in the developmental origins of hypertension and cardiorenal disease. Am. J. Physiol. Regul. Integr. Comp. Physiol.295(6), R1941–R1952 (2008).
  • Tamimi R, Lagiou P, Vatten LJ et al. Pregnancy hormones, pre-eclampsia, and implications for breast cancer risk in the offspring. Cancer Epidemiol. Biomarkers Prev.12(7), 647–650 (2003).
  • Trichopoulos D, Adami HO, Ekbom A, Hsieh CC, Lagiou P. Early life events and conditions and breast cancer risk: from epidemiology to etiology. Int. J. Cancer122(3), 481–485 (2008).
  • Lagiou P, Hsieh CC, Trichopoulos D et al. Neonatal growth and breast cancer risk in adulthood. Br. J. Cancer99(9), 1544–1548 (2008).
  • Freeman DJ, McManus F, Brown EA et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension44(5), 708–714 (2004).
  • Hubel CA, Wallukat G, Wolf M et al. Agonistic angiotensin II type 1 receptor autoantibodies in postpartum women with a history of preeclampsia. Hypertension49(3), 612–617 (2007).
  • Hubel CA, Powers RW, Snaedal S et al. C-reactive protein is elevated 30 years after eclamptic pregnancy. Hypertension51(6), 1499–1505 (2008).
  • Thompson WD, Jacobson HI, Negrini B, Janerich DT. Hypertension, pregnancy, and risk of breast cancer. JNCI J. Natl Cancer Inst.81(20), 1571–1574 (1989).
  • Terry MB, Perrin M, Salafia CM et al. Preeclampsia, pregnancy-related hypertension, and breast cancer risk. Am. J. Epidemiol.165(9), 1007–1014 (2007).
  • Troisi R, Innes KE, Roberts JM, Hoover RN. Preeclampsia and maternal breast cancer risk by offspring gender: do elevated androgen concentrations play a role? Br. J. Cancer97(5), 688–690 (2007).
  • Xue F , Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol.8(12), 1088–1100 (2007).
  • Cohn BA, Cirillo PM, Christianson RE, van den Berg BJ, Siiteri PK. Placental characteristics and reduced risk of maternal breast cancer. J. Natl Cancer Inst.93(15), 1133–1140 (2001).
  • Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res.7(6), 245–251 (2005).
  • Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev. Cell1(4), 467–475 (2001).
  • Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor a is required for proliferation and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci USA103(7), 2196–2201 (2006).
  • Oakes SR, Hilton HN, Ormandy CJ. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res.8(2), 207 (2006).
  • Brisken C, Kaur S, Chavarria TE et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol.210(1), 96–106 (1999).
  • Wlodek M, Ceranic V, O’Dowd R, Westcott K, Siebel A. Maternal progesterone treatment rescues the mammary impairment following uteroplacental insufficiency and improves postnatal pup growth in the rat. Reprod. Sci.16(4), 380–390 (2009).
  • Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO. Transient increase in the risk of breast cancer after giving birth. N. Engl. J. Med.331(1), 5–9 (1994).
  • Schedin P. Pregnancy-associated breast cancer and metastasis. Nat. Rev. Cancer6(4), 281–291 (2006).
  • Levine RJ, Maynard SE, Qian C et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med.350(7), 672–683 (2004).
  • Levine RJ, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med.355(10), 992–1005 (2006).
  • Fisher SJ, Roberts JM. Defects in placentation and placental perfusion. In: Chelsey’s Hypertensive Disorders in Pregnancy. Lindheimer MD, Roberts JM, Cunningham FG (Eds). Appleton & Lange, CT, USA 377–394 (1999)
  • Conrad KP, Benyo DF. Placental cytokines and the pathogenesis of preeclampsia. Am. J. Reprod. Immunol.37(3), 240–249 (1997).
  • Wolf M, Hubel CA, Lam C et al. Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. J. Clin. Endocrinol. Metab.89(12), 6239–6243 (2004).
  • Wolf M, Shah A, Lam C et al. Circulating levels of the antiangiogenic marker sFLT-1 are increased in first versus second pregnancies. Am. J. Obstet. Gynecol.193(1), 16–22 (2005).
  • Thadhani R, Mutter WP, Wolf M et al. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia. J. Clin. Endocrinol. Metab.89(2), 770–775 (2004).
  • Shibata E, Rajakumar A, Powers RW et al. Soluble fms-like tyrosine kinase 1 is increased in preeclampsia but not in normotensive pregnancies with small-for-gestational-age neonates: relationship to circulating placental growth factor. J. Clin. Endocrinol. Metab.90(8), 4895–4903 (2005).
  • Rajakumar A, Michael HM, Rajakumar PA et al. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta26(7), 563–573 (2005).
  • Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension46(5), 1077–1085 (2005).
  • Abid M, Schoots I, Spokes K, Wu S, Mawhinney C, Aird W. Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IκB/NF-κB. J. Biol. Chem.279(42), 44030–44038 (2004).
  • Abid M, Tsai J, Spokes K, Deshpande S, Irani K, Aird W. Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J.15(13), 2548–2550 (2001).
  • Maynard SE, Venkatesha S, Thadhani R, Karumanchi SA. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr. Res.57(5 Pt 2), 1R–7R (2005).
  • Karumanchi SA, Bdolah Y. Hypoxia and sFlt-1 in preeclampsia: the “chicken-and-egg” question. Endocrinology145(11), 4835–4837 (2004).
  • Tsatsaris V, Goffin F, Munaut C et al. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J. Clin. Endocrinol. Metab.88(11), 5555–5563 (2003).
  • Lu F, Longo M, Tamayo E et al. The effect of over-expression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am. J. Obstet. Gynecol.196(4), 396e1–396e7 (2007).
  • Vuorela P, Helske S, Hornig C, Alitalo K, Weich H, Halmesmaki E. Amniotic fluid-soluble vascular endothelial growth factor receptor-1 in preeclampsia. Obstet. Gynecol.95(3), 353–357 (2000).
  • Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem. Biophys. Res. Commun.226(2), 324–328 (1996).
  • Bridges JP, Gilbert JS, Colson D et al. Oxidative stress contributes to soluble Fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am. J. Hypertens. DOI:10.1038/ajh.2009.24 (Epub ahead of print) (2009).
  • Bando H, Weich HA, Brokelmann M et al. Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 and prognosis in breast cancer. Br. J. Cancer92(3), 553–561 (2005).
  • Ferrara N, Frantz G, LeCouter J et al. Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Am. J. Pathol.162(6), 1881–1893 (2003).
  • Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol.2(11), 667–673 (2001).
  • Viloria-Petit A, Miquerol L, Yu JL et al. Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO J.22(16), 4091–4102 (2003).
  • Sabbah M, Emami S, Redeuilh G et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist.Updat.11(4–5), 123–151 (2008).
  • Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc.5(1), 24–33 (2000).
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86(3), 353–364 (1996).
  • Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature362(6423), 841–844 (1993).
  • Hurwitz HI, Fehrenbacher L, Hainsworth JD et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol.23(15), 3502–3508 (2005).
  • Sandler A, Gray R, Perry MC et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355(24), 2542–2550 (2006).
  • Baka S, Clamp AR, Jayson GC. A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis. Expert Opin. Ther. Targets10(6), 867–876 (2006).
  • Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Correlation between soluble endoglin, vascular endothelial growth factor receptor-1, and adipocytokines in preeclampsia. J. Clin. Endocrinol. Metab.92(7), 2672–2679 (2007).
  • Jerkic M, Rivas-Elena JV, Prieto M et al. Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J.18(3), 609–611 (2004).
  • Gu Y, Lewis DF, Wang Y. Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies. J. Clin. Endocrinol. Metab.93(1), 260–266 (2008).
  • Goumans MJ, Liu Z, ten DP. TGF-β signaling in vascular biology and dysfunction. Cell Res.19(1), 116–127 (2009).
  • Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem.276(42), 38527–38535 (2001).
  • Kang Y, Siegel PM, Shu W et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3(6), 537–549 (2003).
  • Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Correlation between soluble endoglin, vascular endothelial growth factor receptor-1, and adipocytokines in preeclampsia. J. Clin. Endocrinol. Metab.92(7), 2672–2679 (2007).
  • Criswell TL, Dumont N, Barnett JV, Arteaga CL. Knockdown of the transforming growth factor-β type III receptor impairs motility and invasion of metastatic cancer cells. Cancer Res.68(18), 7304–7312 (2008).
  • Lee SH, Mizutani N, Mizutani M et al. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol. Immunother.55(12), 1565–1574 (2006).
  • Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA100(15), 8621–8623 (2003).
  • Akhurst RJ, Derynck R. TGF-β signaling in cancer – a double-edged sword. Trends Cell. Biol.11(11), S44–S51 (2001).
  • Rotello RJ, Lieberman RC, Purchio AF, Gerschenson LE. Coordinated regulation of apoptosis and cell proliferation by transforming growth factor β 1 in cultured uterine epithelial cells. Proc. Natl Acad. Sci. USA88(8), 3412–3415 (1991).
  • Patel P, Varghese E, Ding G et al. Transforming growth factor β induces mesangial cell apoptosis through NO- and p53-dependent and -independent pathways. J. Investig. Med.48(6), 403–410 (2000).
  • Chang CF, Westbrook R, Ma J, Cao D. Transforming growth factor-β signaling in breast cancer. Front. Biosci.12, 4393–4401 (2007).
  • Bierie B, Gorska AE, Stover DG, Moses HL. TGF-β promotes cell death and suppresses lactation during the second stage of mammary involution. J. Cell. Physiol.219(1), 57–68 (2009).
  • Levy L, Hill CS. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev.17(1–2), 41–58 (2006).
  • Watabe T, Miyazono K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res.19(1), 103–115 (2000).
  • Mani SA, Guo W, Liao MJ et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell133(4), 704–715 (2008).
  • Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev.17(5), 325–337 (2006).
  • Seeger H, Wallwiener D, Mueck AO. Effects of estradiol and progestogens on tumor-necrosis factor-α-induced changes of biochemical markers for breast cancer growth and metastasis. Gynecol. Endocrinol.24(10), 576–579 (2008).
  • Wang T, Niu G, Kortylewski M et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med.10(1), 48–54 (2004).
  • Barnea ER, MacLusky NJ, DeCherney AH, Naftolin F. Catechol-O-methyl transferase activity in the human term placenta. Am. J. Perinatol.5(2), 121–127 (1988).
  • Fukui M, Zhu BT. Mechanism of 2-methoxyestradiol-induced apoptosis and growth arrest in human breast cancer cells. Mol. Carcinog.48(1), 66–78 (2008).
  • Cicek M, Iwaniec UT, Goblirsch MJ et al. 2-Methoxyestradiol suppresses osteolytic breast cancer tumor progression in vivo. Cancer Res.67(21), 10106–10111 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.