100
Views
32
CrossRef citations to date
0
Altmetric
Special Report

Potential of optical coherence tomography for early diagnosis of oral malignancies

&
Pages 321-329 | Published online: 10 Jan 2014

References

  • American Cancer Society. Cancer Facts and Figures. American Cancer Society Report, 1–4 (2008).
  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun J. CA Cancer J. Clin.57, 43–66 (2007).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Regezi JA, Sciubba J. Oral Pathology. WB Saunders Co, NY, USA 77–90 (1993).
  • Acha A, Ruesga MT, Rodriguez MJ, Pancorbo MA, Aguirre JM. Applications of the oral scraped (exfoliative) cytology in oral cancer and precancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol.10, 95–102 (2005).
  • Poate T, Buchanan J, Hodgson T et al. An audit of the efficacy of the oral brush biopsy technique in a specialist oral medicine unit. Oral Oncol.40, 829–834 (2004).
  • Horowitz AM. Perform a death-defying act: the 90-second oral cancer examination. J. Am. Dent. Assoc.132(Suppl.), 36S–40S (2001).
  • Horowitz AM, Drury TF, Goodman HS, Yellowitz JA. Oral pharyngeal cancer prevention and early detection. Dentists’ opinions and practices. J. Am. Dent. Assoc.131(4), 453–462 (2000).
  • Alfano MC, Horowitz AM. Professional and community efforts to prevent morbidity and mortality from oral cancer. J. Am. Dent. Assoc.132(Suppl.), 24S–29S (2001).
  • Downer MC, Jullien JA, Speight PM. An interim determination of health gain from oral cancer and precancer screening: preselecting high risk individuals. Community Dent. Health15(2), 72–76 (1998).
  • Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diagnostic aids for the detection of oral cancer. Oral Oncol.44, 10–22 (2008).
  • Trullenque-Eriksson A, Muñoz-Corcuera M, Campo-Trapero J et al. Analysis of new diagnostic methods in suspicious lesions of the oral mucosa. Med. Oral Pathol. Oral Cir. Bucal.14(5), E210–E216 (2009).
  • Petersen PE, Yamamoto T. Community improving the oral health of older people: the approach of the WHO global oral health programme. Dent. Oral Epidemiol.33(2), 81–92 (2005).
  • California Department of Health Services. Cancer Surveillance Section Annual Report. March 1999.
  • Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium. Cancer6, 963–968 (1953).
  • Hunter KD, Parkinson EK, Harrison PR. Profiling early head and neck cancer. Nat. Rev. Cancer5(2), 127–135 (2005).
  • Epstein JB, Feldman R, Dolor RJ, Porter SR. The utility of tolonium chloride rinse in the diagnosis of recurrent or second primary cancers in patients with prior upper aerodigestive tract cancer. Head Neck25(11), 911–921 (2003).
  • Epstein JB, Zhang L, Rosin M. Advances in the diagnosis of oral premalignant and malignant lesions. J. Can. Dent. Assoc.68(10), 617–621 (2002).
  • Silverman S, Migliorati C, Barbosa J. Toluidine blue staining in the detection of oral precancerous and malignant lesions. Oral Surg. Oral Med. Oral Pathol.57, 379–382 (1984).
  • Epstein J, Scully C, Spinelli U. Toluidine blue and Lugol’s iodine solution for the assessment of oral malignant disease and lesions at risk of malignancy. J. Oral Pathol. Med.21, 160–163 (1992).
  • Patton LL. The effectiveness of community-based visual screening and utility of adjunctive diagnostic aids in the early detection of oral cancer. Oral Oncol.39(7), 708–723 (2003).
  • Onofre MA, Sposto MR, Navarro CM. Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.91(5), 535–540 (2001).
  • Zhang L, Williams M, Poh CF et al. Toluidine blue staining identifies high-risk primary oral premalignant lesions with poor outcome. Cancer Res.65, 8017–8021 (2005).
  • Farah CS, McCullough MJ. A pilot case control study on the efficacy of acetic acid wash and chemiluminescent illumination (ViziLite) in the visualisation of oral mucosal white lesions. Oral Oncol.43(8), 820–824 (2007).
  • Patton LP, Epstein JB, Kerr RA. Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J. Am. Dent. Assoc.139, 896–905 (2008).
  • Epstein JB, Silverman S Jr, Epstein JD, Lonky SA, Bride MA. Analysis of oral lesion biopsies identified and evaluated by visual examination, chemiluminescence and toluidine blue. Oral Oncol.44, 538–544 (2008).
  • Poate TW, Buchanan JA, Hodgson TA et al. An audit of the efficacy of the oral brush biopsy technique in a specialist oral medicine unit. Oral Oncol.40(8), 829–834 (2004).
  • Acha A, Ruesga MT, Rodriguez MJ, Martinez de Pancorbo MA, Aguirre JM. Applications of the oral scraped (exfoliative) cytology in oral cancer and precancer. Oral Med. Oral Pathol. Oral Cir. Bucal.10(2), 95–102 (2005).
  • Ogden GR, Cowpe JG, Green MW. Detection of field change in oral cancer using oral exfoliative cytologic study. Cancer68, 1611–1615 (1991).
  • El-Naggar AK, Mao L, Staerkel G et al. Genetic heterogeneity in saliva from patients with oral squamous carcinomas: implications in molecular diagnosis and screening. J. Mol. Diagn.3, 164–170 (2001).
  • Epstein JB, Zhang L, Rosin M. Advances in the diagnosis of oral premalignant and malignant lesions. J. Can. Dent. Assoc.68, 617–621 (2002).
  • Izarzugaza MI, Esparza H, Aguirre JM. Epidemiological aspects of oral and pharyngeal cancers in the Basque Country. J. Oral Pathol. Med.30, 521–526 (2001).
  • Sciubba JJ. Improving detection of precancerous and cancerous oral lesions: computer-assisted analysis of the oral brush biopsy. J. Am. Dent. Assoc.130, 1445–1457 (1999).
  • Ogden GR, Cowpe JG, Green M. Cytobrush and wooden spatula for oral exfoliative cytology. A comparison. Acta Cytol.36, 706–710 (1992).
  • Jones AC, Pink FE, Sandow PL, Stewart CM, Migliorati CA, Baughman RA. The cytobrush plus cell collector in oral cytology. Oral Surg. Oral Med. Oral Pathol.77, 95–99 (1994).
  • Nichols ML, Quinn FB Jr, Schnadig VJ et al. Interobserver variability in the interpretation of brush cytologic studies from head and neck lesions. Arch. Otolaryngol. Head Neck Surg.117, 1350–1355 (1991).
  • Rick GM, Slater L. Oral brush biopsy: the problem of false positives. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.96, 252 (2003).
  • Remmerbach TW, Weidenbach H, Muller C et al. Diagnostic value of nucleolar organizer regions (AgNORs) in brush biopsies of suspicious lesions of the oral cavity. Anal. Cell. Pathol.25, 139–146 (2003).
  • Boyle JO, Mao L, Brennan JA et al. Gene mutations in saliva as molecular markers for head and neck squamous cell carcinomas. Am. J. Surg.168, 429–432 (1994).
  • Rosas SL, Koch W, da Costa Carvalho MG et al. Promoter hypermethylation patterns of p16, O6-methylguanine-DNAmethyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res.61, 939–942 (2001).
  • Rosin MP, Epstein JB, Berean K et al. The use of exfoliative cell samples to map clonal genetic alterations in the oral epithelium of high-risk patients. Cancer Res.57, 5258–5260 (1997).
  • Okami K, Imate Y, Hashimoto Y, Kamada T, Takahashi M. Molecular detection of cancer cells in saliva from oral and pharyngeal cancer patients. Tokai J. Exp. Clin. Med.27, 85–89 (2002).
  • Huang MF, Chang YC, Liao PS, Huang TH, Tsay CH, Chou MY. Loss of heterozygosity of p53 gene of oral cancer detected by exfoliative cytology. Oral Oncol.35, 296–301 (1999).
  • Bigio IJ, Bown SG. Spectroscopic sensing of cancer and cancer therapy: current status of translational research. Cancer Biol. Ther.3(3), 259–267 (2004).
  • McGee SA, Mirkovic J, Mardirossian V et al. Model-based spectroscopic analysis of the oral cavity: impact of anatomy. J. Biomed. Opt.13(6), 064034 (2008).
  • Culha M, Stokes D, Vo-Dinh T, Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene. Expert Rev. Mol. Diagn.3(5), 669–675 (2003).
  • Choo-Smith LP, Edwards HG, Endtz HP et al. Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers67(1), 1–9 (2002).
  • Bigio IJ, Mourant JR, Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol.42(5), 803–814 (1997).
  • Farrell TJ, Patterson MS, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys.19(4), 879–888 (1992).
  • Sokolov K, Follen M, Richards-Kortum R. Optical spectroscopy for detection of neoplasia. Curr. Opin. Chem. Biol.6, 651–658 (2002).
  • Sharwani A, Jerjes W, Salih V et al. Assessment of oral premalignancy using elastic scattering spectroscopy. Oral Oncol.42(4), 343–349 (2006).
  • Upile T, Jerjes W, Betz CS, El Maaytah M, Wright A, Hopper C. Optical diagnostic techniques in the head and neck. Dent. Update34(7), 410–412, 415–416, 419–420 (2007).
  • Lane PM, Gilhuly T, Whitehead P et al. Simple device for the direct visualization of oral-cavity tissue fluorescence. J. Biomed. Opt.11(2), 024006 (2006).
  • Poh CF, Ng SP, Williams PM et al. Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head Neck29, 71–76 (2007).
  • Poh CF, Zhang L, Anderson DW et al. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin. Cancer Res.12(22), 6716–6722 (2006).
  • Roblyer D, Kurachi C, Stepanek V et al.Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev. Res.2(5), 423–431 (2009).
  • Rosin MP, Poh CF, Guillard M, Williams PM, Zhang L, MacaUlay C. Visualization and other emerging technologies as change makers for oral cancer prevention. Ann. NY Acad. Sci.1098, 167–183 (2007).
  • Schwarz RA, Gao W, Redden Webber C et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy simple device for the direct visualization of oral-cavity tissue fluorescence. Cancer115(8), 1669–1679 (2009).
  • De Veld DC, Witjes MJ, Sterenborg HJ, Roodenburg JL. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol.41, 117–131 (2005).
  • Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol.68(5), 603–632 (1998).
  • Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia2(1–2), 89–117 (2000).
  • Schwarz RA, Gao W, Redden Weber C et al.Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer115(8), 1669–1679 (2009).
  • Rahman M, Chaturvedi P, Gillenwater AM, Richards-Kortum R. Low-cost, multimodal, portable screening system for early detection of oral cancer. J. Biomed. Opt.13(3), 0305020 (2008).
  • Inoue H, Igari T, Nishikage T, Ami K, Yoshida T, Iwai, T. A novel method of virtual histopathology using laser-scanning confocal microscopy in-vitro with untreated fresh specimens from the gastrointestinal mucosa. Endoscopy32, 439–443 (2000).
  • White WM, Rajadhyaksha M, Gonzalez S, Fabian RL, Anderson RR. Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy. Laryngoscope109, 1709–1717 (1999).
  • Clark AM, Gillenwater AM, Collier TG et al. Confocal microscopy for real-time detection of oral cavity neoplasia. Clin. Cancer Res.9, 4714–4721 (2003).
  • Thong PS, Olivo M, Kho KW et al. Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J. Biomed. Opt.12(1), 014007 (2007).
  • Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol.44(11), 1059–1066 (2008).
  • Kennedy JC, Pottier RH, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B14(4), 275–292 (1992).
  • Cassas A, Fukuda H, Battle A. Hexyl ALA ALA-based photodynamic therapy in epithelial tumors: in vivo and in vitro models. Proc. SPIE 3909 114–123. Optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy IX. Dougherty TJ (Ed.). (2002).
  • Ebihara A, Liaw L-H, Krasieva TB et al. Detection and diagnosis of oral cancer by light-induced fluorescence. Lasers Surg. Med.32(1), 17–24 (2003).
  • Chang CJ, Wilder-Smith P. Topical application of photofrin for photodynamic diagnosis of oral neoplasms. Plast. Reconstr. Surg.115(7), 1877–1886 (2005).
  • Leunig A, Rick K, Stepp H et al. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am. J. Surg.172(6), 674–677 (1996).
  • Leunig A, Mehlmann M, Betz C et al. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope110(1), 78–83 (2000).
  • Leunig A, Mehlmann M, Betz C et al. Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies. J. Photochem. Photobiol. B60(1), 44–49 (2001).
  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science254, 1178–1181 (1991).
  • Fercher AF. Optical coherence tomography. J. Biomed. Opt.1, 157–173 (1996).
  • Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J. Sel. Topics Quantum Electron7(2), 931–935 (2001).
  • Izatt JA, Hee MR, Swanson EA et al. Micrometer-scale resolution imaging of the anterior eye with optical coherence tomography. Arch. Ophthamol.112, 1584–1589 (1994).
  • Schmitt JM, Yadlowsky M, Bonner RF. Subsurface imaging if living skin with optical coherence tomography. Dermatology191, 93–98 (1995).
  • Kobayashi K, Izatt JA, Kulkarni MD, Willis J, Sivak MV. High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results. Gastrointest. Endosc.47, 515–523 (1998).
  • Yelbuz TM, Choma MA, Thrane L, Kirby ML, Izatt JA. Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation106, 2771–2774 (2002).
  • Tearney GJ, Brezinski ME, Southern JF et al. Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol.157, 1915–1919 (1997).
  • Colston BW, Everett MJ, Silva LB et al. Imaging of hard and soft tissue structure in oral cavity by optical coherence tomography. Appl. Opt.37, 3582–3585 (1998).
  • Zagaynova EV, Streltsova OS, Gladkova ND et al.In vivo optical coherence tomography feasibility for bladder disease. J. Urol.167, 1492–1496 (2002).
  • Pitris C, Jesser C, Boppart SA et al. Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies. J. Gastroenterol.35, 87–92 (2000).
  • Gonzalo N, Serruys PW, Okamura T et al. Optical coherence tomography patterns of stent restenosis. Am. Heart J.158(2), 284–293 (2009).
  • López-Guajardo L, Benitez-Herreros J, Teus-Guezala M. Optical coherence tomography as a method for studying sutureless microincisional vitrectomy sclerotomies. Am. J. Ophthalmol.148(2), 321–322 (2009).
  • Arvanitakis M, Hookey L, Tessier G et al. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy41(8), 696–701 (2009)
  • Coxson HO, Mayo J, Lam S, Santyr G, Parraga G, Sin DD. New and current clinical imaging techniques to study chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. (2009).
  • Ridgway JM, Armstrong WB, Guo S et al.In vivo optical coherence tomography of the human oral cavity and oropharynx. Arch. Otolaryngol. Head Neck Surg.132(10), 1074–1081 (2006).
  • Wang KK, Zhu TC. Reconstruction of in-vivo optical properties for human prostate using interstitial diffuse optical tomography. Opt. Express17(14), 11665–11672 (2009).
  • Cucchiara S, Di Nardo G. Optical coherence tomography in children with coeliac disease. Dig. Liver Dis.41(9), 630–631 (2009).
  • Williamson JP, James AL, Phillips MJ, Sampson DD, Hillman DR, Eastwood PR. Quantifying tracheobronchial tree dimensions: methods, limitations and emerging techniques. Eur. Respir. J.34(1), 42–55 (2009).
  • Mogensen M, Thrane L, Jørgensen TM, Andersen PE, Jemec GB. OCT imaging of skin cancer and other dermatological diseases. J. Biophotonics2(6–7), 442–451 (2009).
  • Ozawa N, Sumi Y, Chong C, Kurabayashi T. Evaluation of oral vascular anomalies using optical coherence tomography. Br. J. Oral Maxillofac. Surg.47(8), 622–626 (2009).
  • Strebel J, Ender A, Paqué F, Krähenmann M, Attin T, Schmidlin PR. In vivo validation of a three-dimensional optical method to document volumetric soft tissue changes of the interdental papilla. J. Periodontol.80(1), 56–61 (2009).
  • Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am. J. Orthod. Dentofacial. Orthop.135(2), 252–259 (2009).
  • Tsai MT, Lee HC, Lu CW et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J. Biomed. Opt.13(4), 044012 (2008).
  • Tsai MT, Lee HC, Lee CK et al. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express16(20), 15847–15862 (2008).
  • Bouma BE, Tearney GJ. Handbook of Optical Coherence Tomography. Marcel Dekker, NY, USA (2002).
  • Drexler WM, Fujimoto JG. Optical Coherence Tomography Technology and Applications. Springer, NY, USA (2008).
  • Leitgeb RA, Hitzenberger CK, Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express11, 889–894 (2003).
  • Wojtkowski M, Srinivasan V, Ko T et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express12, 2404–2422 (2004).
  • Cense B, Nassif N, Chen T et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express12, 2435–2447 (2004).
  • Yun S, Tearney G, de Boer J, Iftimia N, Bouma B. High-speed optical frequency-domain imaging. Opt. Express11, 2953–2963 (2003).
  • Zhang J, Nelson JS, Chen Z. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt. Lett.30, 147–149 (2005).
  • Huber R, Wojtkowski M, Taira K, Fujimoto J, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express13, 3513–3528 (2005).
  • Yasuno Y, Madjarova VD, Makita S et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express13, 10652–10664 (2005).
  • Wilder-Smith P, Lee K, Guo S et al.In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg. Med.41, 353–357 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.