104
Views
61
CrossRef citations to date
0
Altmetric
Review

Applications of neural and mesenchymal stem cells in the treatment of gliomas

, &
Pages 597-612 | Published online: 10 Jan 2014

References

  • DeAngelis LM. Brain tumors. N. Engl. J. Med.344(2), 114–123 (2001).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • McGirt MJ, Than KD, Weingart JD et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J. Neurosurg.110(3), 583–588 (2009).
  • Kornblith PL, Walker M. Chemotherapy for malignant gliomas. J. Neurosurg.68(1), 1–17 (1988).
  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med.359(5), 492–507 (2008).
  • Holland EC. Glioblastoma multiforme: the terminator. Proc. Natl Acad. Sci. USA97(12), 6242–6244 (2000).
  • Kaye AH, Laws ER. Historical perspective. In: Brain Tumors: An Encyclopedic Approach. Kaye AH, Laws ER (Eds). Churchill Livingstone, NY, USA 3–8 (2001).
  • Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol.114(5), 443–458 (2007).
  • McGirt MJ, Chaichana KL, Attenello FJ et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery63(4), 700–707 (2008).
  • McGirt MJ, Chaichana KL, Gathinji M et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J. Neurosurg.110(1), 156–162 (2009).
  • Salazar OM, Rubin P. The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int. J. Radiat. Oncol. Biol. Phys.1(7–8), 627–637 (1976).
  • Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery38(5), 962–970 (1996).
  • Fadul C, Wood J, Thaler H et al. Morbidity and mortality of craniotomy for excision of supratentorial gliomas. Neurology38(9), 1374–1379 (1988).
  • Sawaya R, Hammoud M, Schoppa D et al. Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery42(5), 1044–1055 (1998).
  • Dandy W. Removal of right cerebral hemispheres for certain tumors with hemiplegia: preliminary report. JAMA90, 823–825 (1928).
  • Karim AB, Maat B, Hatlevoll R et al. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int. J. Radiat. Oncol. Biol. Phys.36(3), 549–556 (1996).
  • Shaw E, Arusell R, Scheithauer B et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J. Clin. Oncol.20(9), 2267–2276 (2002).
  • DeAngelis LM, Burger PC, Green SB, Cairncross JG. Malignant glioma: who benefits from adjuvant chemotherapy? Ann. Neurol.44(4), 691–695 (1998).
  • McGirt MJ, Than KD, Weingart JD et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J. Neurosurg.110(3), 583–588 (2009).
  • Recht LD, Lew R, Smith TW. Suspected low-grade glioma: is deferring treatment safe? Ann. Neurol.31(4), 431–436 (1992).
  • Laing RW, Warrington AP, Graham J et al. Efficacy and toxicity of fractionated stereotactic radiotherapy in the treatment of recurrent gliomas (Phase I/II study). Radiother. Oncol.27(1), 22–29 (1993).
  • Finlay JL. The role of high-dose chemotherapy and stem cell rescue in the treatment of malignant brain tumors. Bone Marrow Transplant.18(Suppl. 3), S1–S5 (1996).
  • Groothuis DR. The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neuro. Oncol.2(1), 45–59 (2000).
  • Pardridge WM. CNS drug design based on principles of blood–brain barrier transport. J. Neurochem.70(5), 1781–1792 (1998).
  • Lesniak MS, Brem H. Targeted therapy for brain tumours. Nat. Rev. Drug. Discov.3(6), 499–508 (2004).
  • Parsa AT, Waldron JS, Panner A et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med.13(1), 84–88 (2007).
  • Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res.66(6), 3294–3302 (2006).
  • Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron58(6), 832–846 (2008).
  • Aboody KS, Brown A, Rainov NG et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA97(23), 12846–12851 (2000).
  • Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. Oncol.5(7), 393–404 (2008).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100(25), 15178–15183 (2003).
  • Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.64(19), 7011–7021 (2004).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Tu SM, Lin SH, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol.3(8), 508–513 (2002).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Xie Z, Chin LS. Molecular and cell biology of brain tumor stem cells: lessons from neural progenitor/stem cells. Neurosurg. Focus24(3–4), E25 (2008).
  • Sakariassen PO, Immervoll H, Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia9(11), 882–892 (2007).
  • Chaichana KL, McGirt MJ, Frazier J et al. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J. Neurooncol.89(2), 219–224 (2008).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1(3), 269–277 (2002).
  • Snyder EY, Taylor RM, Wolfe JH. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature374(6520), 367–370 (1995).
  • Yip S, Aboody KS, Burns M et al. Neural stem cell biology may be well suited for improving brain tumor therapies. Cancer J.9(3), 189–204 (2003).
  • Nakamura K, Ito Y, Kawano Y et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther.11(14), 1155–1164 (2004).
  • Nakamizo A, Marini F, Amano T et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res.65(8), 3307–3318 (2005).
  • Xu F, Zhu JH. Stem cells tropism for malignant gliomas. Neurosci. Bull.23(6), 363–369 (2007).
  • Yip S, Sabetrasekh R, Sidman RL, Snyder EY. Neural stem cells as novel cancer therapeutic vehicles. Eur. J. Cancer42(9), 1298–1308 (2006).
  • Erlandsson A, Larsson J, Forsberg-Nilsson K. Stem cell factor is a chemoattractant and a survival factor for CNS stem cells. Exp. Cell Res.301(2), 201–210 (2004).
  • Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J. Clin. Invest.113(9), 1364–1374 (2004).
  • Serfozo P, Schlarman MS, Pierret C, Maria BL, Kirk MD. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines. Cancer Cell Int.6, 1 (2006).
  • Heese O, Disko A, Zirkel D, Westphal M, Lamszus K. Neural stem cell migration toward gliomas in vitro. Neuro. Oncol.7(4), 476–484 (2005).
  • Widera D, Holtkamp W, Entschladen F et al. MCP-1 induces migration of adult neural stem cells. Eur. J. Cell. Biol.83(8), 381–387 (2004).
  • Palumbo R, Galvez BG, Pusterla T et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J. Cell. Biol.179(1), 33–40 (2007).
  • Kendall SE, Najbauer J, Johnston HF et al. Neural stem cell targeting of glioma is dependent on phosphoinositide 3-kinase signaling. Stem Cells26(6), 1575–1586 (2008).
  • Chicoine MR, Silbergeld DL. Mitogens as motogens. J. Neurooncol.35(3), 249–257 (1997).
  • Boockvar JA, Kapitonov D, Kapoor G et al. Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol. Cell. Neurosci.24(4), 1116–1130 (2003).
  • Schichor C, Birnbaum T, Etminan N et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp. Neurol.199(2), 301–310 (2006).
  • Birnbaum T, Roider J, Schankin CJ et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J. Neurooncol.83(3), 241–247 (2007).
  • Schmidt NO, Przylecki W, Yang W et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia7(6), 623–629 (2005).
  • Ziu M, Schmidt NO, Cargioli TG et al. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J. Neurooncol.79(2), 125–133 (2006).
  • Ries C, Egea V, Karow M et al. MMP-2, MT1-MMP and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood109(9), 4055–4063 (2007).
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med.9(6), 702–712 (2003).
  • Wysoczynski M, Reca R, Ratajczak J et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood105(1), 40–48 (2005).
  • Son BR, Marquez-Curtis LA, Kucia M et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells24(5), 1254–1264 (2006).
  • Imitola J, Raddassi K, Park KI et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA101(52), 18117–18122 (2004).
  • Allport JR, Shinde Patil VR, Weissleder R. Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via α4-integrin and SDF-1α-dependent mechanisms. Cancer Biol. Ther.3(9), 838–844 (2004).
  • Rempel SA, Dudas S, Ge S, Gutierrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res.6(1), 102–111 (2000).
  • Fears CY, Sontheimer HW, Bullard DC, Gladson CL. Could labeled neuronal progenitor cells be used to target glioma tumor endothelium? Cancer Biol. Ther.3(9), 845–846 (2004).
  • Ehtesham M, Yuan X, Kabos P et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia6(3), 287–293 (2004).
  • Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J. Biol. Chem.277(51), 49481–49487 (2002).
  • Rubin JB, Kung AL, Klein RS et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA100(23), 13513–13518 (2003).
  • Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1α in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res.2(6), 327–338 (2004).
  • Liang Z, Wu T, Lou H et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res.64(12), 4302–4308 (2004).
  • Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature197, 452–454 (1963).
  • Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J. Cell. Physiol.62, 327–336 (1963).
  • Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA94(23), 12425–12430 (1997).
  • Levison SW, Goldman JE. Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res.48(2), 83–94 (1997).
  • Doyle KL, Khan M, Cunningham AM. Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J. Comp. Neurol.437(2), 186–195 (2001).
  • Sakakibara S, Okano H. Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J. Neurosci.17(21), 8300–8312 (1997).
  • Uchida K, Momiyama T, Okano H et al. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci. Res.52(3), 276–286 (2005).
  • Palm K, Salin-Nordstrom T, Levesque MF, Neuman T. Fetal and adult human CNS stem cells have similar molecular characteristics and developmental potential. Brain Res. Mol. Brain Res.78(1–2), 192–195 (2000).
  • Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R. A role for SOX1 in neural determination. Development125(10), 1967–1978 (1998).
  • Zappone MV, Galli R, Catena R et al. Sox2 regulatory sequences direct expression of a β-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development127(11), 2367–2382 (2000).
  • Cai J, Wu Y, Mirua T et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol.251(2), 221–240 (2002).
  • Parker MA anderson JK, Corliss DA et al. Expression profile of an operationally-defined neural stem cell clone. Exp. Neurol.194(2), 320–332 (2005).
  • Gottlieb DI. Large-scale sources of neural stem cells. Annu. Rev. Neurosci.25, 381–407 (2002).
  • Palmer TD, Schwartz PH, Taupin P et al. Cell culture. Progenitor cells from human brain after death. Nature411(6833), 42–43 (2001).
  • Kukekov VG, Laywell ED, Suslov O et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol.156(2), 333–344 (1999).
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat. Med.4(11), 1313–1317 (1998).
  • Antel JP, Nalbantoglu J, Olivier A. Neuronal progenitors – learning from the hippocampus. Nat. Med.6(3), 249–250 (2000).
  • Nunes MC, Roy NS, Keyoung HM et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med.9(4), 439–447 (2003).
  • Uchida N, Buck DW, He D et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97(26), 14720–14725 (2000).
  • Flax JD, Aurora S, Yang C et al. Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat. Biotechnol.16(11), 1033–1039 (1998).
  • Tropepe V, Coles BL, Chiasson BJ et al. Retinal stem cells in the adult mammalian eye. Science287(5460), 2032–2036 (2000).
  • Reubinoff BE, Itsykson P, Turetsky T et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol.19(12), 1134–1140 (2001).
  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol.494(3), 415–434 (2006).
  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427(6976), 740–744 (2004).
  • Quinones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg. Clin. N. Am.18(1), 15–20, vii (2007).
  • Lee A, Kessler JD, Read TA et al. Isolation of neural stem cells from the postnatal cerebellum. Nat. Neurosci.8(6), 723–729 (2005).
  • Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res. Dev. Brain Res.151(1–2), 159–168 (2004).
  • Colombo E, Giannelli SG, Galli R et al. Embryonic stem-derived versus somatic neural stem cells: a comparative analysis of their developmental potential and molecular phenotype. Stem Cell24(4), 825–834 (2006).
  • Jiang Y, Henderson D, Blackstad M et al. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc. Natl Acad. Sci. USA100(Suppl. 1), 11854–11860 (2003).
  • Kogler G, Sensken S, Airey JA et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med.200(2), 123–135 (2004).
  • Joannides A, Gaughwin P, Schwiening C et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet364(9429), 172–178 (2004).
  • Renfranz PJ, Cunningham MG, McKay RD. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell66(4), 713–729 (1991).
  • Rosario CM, Yandava BD, Kosaras B et al. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development124(21), 4213–4224 (1997).
  • Yandava BD, Billinghurst LL, Snyder EY. ‘Global’ cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl Acad. Sci. USA96(12), 7029–7034 (1999).
  • Temple S. The development of neural stem cells. Nature14(6859), 112–117 (2001).
  • Ma W, Fitzgerald W, Liu QY et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol.190(2), 276–288 (2004).
  • Zlomanczuk P, Mrugala M, de la Iglesia HO et al. Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus. Exp. Neurol.174(2), 162–168 (2002).
  • Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol.20(11), 1103–1110 (2002).
  • Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke35(4), 952–957 (2004).
  • Martinez-Serrano A, Rubio FJ, Navarro B, Bueno C, Villa A. Human neural stem and progenitor cells: in vitro and in vivo properties and potential for gene therapy and cell replacement in the CNS. Curr. Gene Ther.1(3), 279–299 (2001).
  • Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat. Med.10(Suppl.), S42–S50 (2004).
  • Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol.4(5), 267–274 (1976).
  • Gronthos S, Graves SE, Ohta S, Simmons PJ. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood84(12), 4164–4173 (1994).
  • Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG. Bone marrow stromal cells: characterization and clinical application. Crit. Rev. Oral Biol. Med.10(2), 165–181 (1999).
  • Huss R. Perspectives on the morphology and biology of CD34-negative stem cells. J. Hematother. Stem Cell Res.9(6), 783–793 (2000).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Brown SE, Tong W, Krebsbach PH. The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs189(1–4), 256–260 (2009).
  • Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol. J.4(2), 92–96 (2003).
  • Conget PA, Minguell JJ. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp. Hematol.28(4), 382–390 (2000).
  • Tondreau T, Meuleman N, Delforge A et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression and plasticity. Stem Cells23(8), 1105–1112 (2005).
  • Miao Z, Jin J, Chen L et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int.30(9), 681–687 (2006).
  • Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell13(12), 4279–4295 (2002).
  • Pisati F, Belicchi M, Acerbi F et al. Effect of human skin-derived stem cells on vessel architecture, tumor growth and tumor invasion in brain tumor animal models. Cancer Res.67(7), 3054–3063 (2007).
  • Bianchi G, Muraglia A, Daga A et al. Microenvironment and stem properties of bone marrow-derived mesenchymal cells. Wound Repair Regen.9(6), 460–466 (2001).
  • Reyes M, Lund T, Lenvik T et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood98(9), 2615–2625 (2001).
  • Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol.109(1), 235–242 (2000).
  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells24(5), 1294–1301 (2006).
  • Kim DS, Kim JH, Lee JK et al. Overexpression of CXC chemokine receptors is required for the superior glioma- tracking property of umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev.18(3), 511–519 (2009).
  • Glass R, Synowitz M, Kronenberg G et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J. Neurosci.25(10), 2637–2646 (2005).
  • Weinstein DE, Shelanski ML, Liem RK. C17, a retrovirally immortalized neuronal cell line, inhibits the proliferation of astrocytes and astrocytoma cells by a contact-mediated mechanism. Glia3(2), 130–139 (1990).
  • Staflin K, Honeth G, Kalliomaki S et al. Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res.64(15), 5347–5354 (2004).
  • Barresi V, Belluardo N, Sipione S et al. Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther.10(5), 396–402 (2003).
  • Li S, Tokuyama T, Yamamoto J et al. Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther.12(7), 600–607 (2005).
  • Herrlinger U, Woiciechowski C, Sena-Esteves M et al. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol. Ther.1(4), 347–357 (2000).
  • Uhl M, Weiler M, Wick W et al. Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem. Biophys. Res. Commun.328(1), 125–129 (2005).
  • Manome Y, Wen PY, Dong Y et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat. Med.2(5), 567–573 (1996).
  • Aghi M, Hochberg F, Breakefield XO. Prodrug activation enzymes in cancer gene therapy. J. Gene Med.2(3), 148–164 (2000).
  • Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci.4(5), 353–364 (2003).
  • Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev.56(1), 53–102 (2004).
  • Miletic H, Fischer Y, Litwak S et al. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol. Ther.15(7), 1373–1381 (2007).
  • Lynch WP, Sharpe AH, Snyder EY. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J. Virol.73(8), 6841–6851 (1999).
  • Tyler MA, Ulasov IV, Sonabend AM et al. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther.16(2), 262–278 (2009).
  • Arnhold S, Hilgers M, Lenartz D et al. Neural precursor cells as carriers for a gene therapeutical approach in tumor therapy. Cell Transplant.12(8), 827–837 (2003).
  • Sonabend AM, Ulasov IV, Tyler MA et al. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells26(3), 831–841 (2008).
  • Faber C, Terao E, Morga E, Heuschling P. Interleukin-4 enhances the in vitro precursor cell recruitment for tumor-specific T lymphocytes in patients with glioblastoma. J. Immunother.23(1), 11–16 (2000).
  • Benedetti S, Pirola B, Pollo B et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat. Med.6(4), 447–450 (2000).
  • Ehtesham M, Kabos P, Kabosova A et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res.62(20), 5657–5663 (2002).
  • Langowski JL, Zhang X, Wu L et al. IL-23 promotes tumour incidence and growth. Nature442(7101), 461–465 (2006).
  • Yuan X, Hu J, Belladonna ML, Black KL, Yu JS. Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res.66(5), 2630–2638 (2006).
  • Ashkenazi A, Pai RC, Fong S et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest.104(2), 155–162 (1999).
  • Walczak H, Miller RE, Ariail K et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med.5(2), 157–163 (1999).
  • Ehtesham M, Kabos P, Gutierrez MA et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res.62(24), 7170–7174 (2002).
  • Kim I, Kim H, S. I, Snyder EY, Park KI. Induction of intracranial glioblastoma apoptosis by transplantation of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) expressing human neural stem cells (NSCs). Presented at: Annual Meeting of Society for Neuroscience. San Diego, CA, USA, 23–27 October 2004.
  • Shah K, Tung CH, Breakefield XO, Weissleder R. In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol. Ther.11(6), 926–931 (2005).
  • Kock N, Kasmieh R, Weissleder R, Shah K. Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia9(5), 435–442 (2007).
  • Corsten MF, Miranda R, Kasmieh R et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res.67(19), 8994–9000 (2007).
  • Hingtgen S, Ren X, Terwilliger E et al. Targeting multiple pathways in gliomas with stem cell and viral delivered S-TRAIL and Temozolomide. Mol. Cancer Ther.7(11), 3575–3585 (2008).
  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998).
  • Belardelli F, Ferrantini M, Proietti E, Kirkwood JM. Interferon-α in tumor immunity and immunotherapy. Cytokine Growth Factor Rev.13(2), 119–134 (2002).
  • Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J. Natl Cancer Inst.81(7), 497–502 (1989).
  • Streck CJ, Dickson PV, Ng CY et al. Antitumor efficacy of AAV-mediated systemic delivery of interferon-β. Cancer Gene Ther.13(1), 99–106 (2006).
  • Dickson PV, Hamner JB, Burger RA et al. Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-β and restricts tumor growth in a murine model of disseminated neuroblastoma. J. Pediatr. Surg.42(1), 48–53 (2007).
  • Kurozumi K, Nakamura K, Tamiya T et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11(1), 96–104 (2005).
  • Honma T, Honmou O, Iihoshi S et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp. Neurol.199(1), 56–66 (2006).
  • Xu G, Jiang XD, Xu Y et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int.33(4), 466–474 (2008).
  • Kim SM, Lim JY, Park SI et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res.68(23), 9614–9623 (2008).
  • Sato H, Kuwashima N, Sakaida T et al. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther.12(9), 757–768 (2005).
  • Kang SG, Jeun SS, Lim JY et al. Cytotoxicity of rat marrow stromal cells against malignant glioma cells. Childs Nerv. Syst.21(7), 528–538 (2005).
  • Kang SG, Jeun SS, Lim JY et al. Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Childs Nerv. Syst.24(3), 293–302 (2008).
  • Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell92(3), 391–400 (1998).
  • Bello L, Lucini V, Carrabba G et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res.61(24), 8730–8736 (2001).
  • Kim SK, Cargioli TG, Machluf M et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin. Cancer Res.11(16), 5965–5970 (2005).
  • Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat. Med.9(1), 123–128 (2003).
  • Tang Y, Shah K, Messerli SM et al.In vivo tracking of neural progenitor cell migration to glioblastomas. Hum. Gene Ther.14(13), 1247–1254 (2003).
  • Shah K, Bureau E, Kim DE et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann. Neurol.57(1), 34–41 (2005).
  • Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.18(4), 410–414 (2000).
  • Zhang Z, Jiang Q, Jiang F et al.In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage23(1), 281–287 (2004).
  • Slotkin JR, Chakrabarti L, Dai HN et al.In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev. Dyn.236(12), 3393–3401 (2007).
  • Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett.5(4), 709–711 (2005).
  • Anderson SA, Glod J, Arbab AS et al. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood105(1), 420–425 (2005).
  • Wu X, Hu J, Zhou L et al.In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. J. Neurosurg.108(2), 320–329 (2008).
  • Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell. Biol.14(9), 497–504 (2004).
  • Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP. Quantum dot labeling of mesenchymal stem cells. J. Nanobiotechnology5, 9 (2007).
  • Ohyabu Y, Kaul Z, Yoshioka T et al. Stable and non-disruptive in vitro/in vivo labeling of mesenchymal stem cells by internalizing quantum dots. Hum. Gene Ther.20(3), 217–224 (2009).
  • Pike-Overzet K, van der Burg M, Wagemaker G, van Dongen JJ, Staal FJ. New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol. Ther.15(11), 1910–1916 (2007).
  • Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther.15(10), 739–752 (2008).
  • Yeager TR, Reddel RR. Constructing immortalized human cell lines. Curr. Opin Biotechnol.10(5), 465–469 (1999).
  • Hall B, Dembinski J, Sasser AK et al. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int. J. Hematol.86(1), 8–16 (2007).
  • Terada N, Hamazaki T, Oka M et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416(6880), 542–545 (2002).
  • Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature416(6880), 545–548 (2002).
  • Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N. Engl. J. Med.353(8), 811–822 (2005).
  • Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat. Rev. Cancer6(6), 425–436 (2006).
  • Fomchenko EI, Holland EC. Stem cells and brain cancer. Exp. Cell Res.306(2), 323–329 (2005).
  • Parham DM. Pathologic classification of rhabdomyosarcomas and correlations with molecular studies. Mod. Pathol.14(5), 506–514 (2001).
  • Iacobuzio-Donahue CA, Argani P, Hempen PM, Jones J, Kern SE. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res.62(18), 5351–5357 (2002).
  • Chen J, Zhang ZG, Li Y et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ. Res.92(6), 692–699 (2003).
  • Tso CL, Shintaku P, Chen J et al. Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res.4(9), 607–619 (2006).
  • Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp. Mol. Pathol.75(3), 248–255 (2003).
  • De Kok IJ, Drapeau SJ, Young R, Cooper LF. Evaluation of mesenchymal stem cells following implantation in alveolar sockets: a canine safety study. Int. J. Oral Maxillofac. Implants20(4), 511–518 (2005).
  • Chen J, Wang C, Lu S et al.In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res.319(3), 429–438 (2005).
  • Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood99(10), 3838–3843 (2002).
  • Kim DW, Chung YJ, Kim TG, Kim YL, Oh IH. Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood103(5), 1941–1948 (2004).
  • Bexell D, Gunnarsson S, Tormin A et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol. Ther.17(1), 183–190 (2009).
  • Brem H, Piantadosi S, Burger PC et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet345(8956), 1008–1012 (1995).
  • Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol.20(11), 1111–1117 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.