62
Views
10
CrossRef citations to date
0
Altmetric
Review

Found in transcription: gene expression and other novel blood biomarkers for the early detection of breast cancer

, , &
Pages 1115-1123 | Published online: 10 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Berry DA, Cronin KA, Plevritis SK et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med.353(17), 1784–1792 (2005).
  • Shen Y, Zelen M. Screening sensitivity and sojourn time from breast cancer early detection clinical trials: mammograms and physical examinations. J. Clin. Oncol.19(15), 3490–3499 (2001).
  • Pisano ED, Gatsonis C, Hendrick E et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med.353(17), 1773–1783 (2005).
  • Kriege M, Brekelmans CT, Boetes C et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med.351(5), 427–437 (2004).
  • Warner E, Plewes DB, Hill KA et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA292(11), 1317–1325 (2004).
  • Leach MO, Boggis CR, Dixon AK et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet365(9473), 1769–1778 (2005).
  • Kuhl CK, Schrading S, Leutner CC et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol.23(33), 8469–8476 (2005).
  • Sardanelli F, Podo F, D’Agnolo G et al. Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology242(3), 698–715 (2007).
  • Sardanelli F, Podo F. Breast MR imaging in women at high-risk of breast cancer: is something changing in early breast cancer detection? Eur. Radiol.17(4), 873–887 (2007).
  • Harris L, Fritsche H, Mennel R et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol.25(33), 5287–5312 (2007).
  • Maxwell PH, Dachs GU, Gleadle JM et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA94(15), 8104–8109 (1997).
  • Todorov P, Cariuk P, McDevitt T et al. Characterization of a cancer cachectic factor. Nature379(6567), 739–742 (1996).
  • Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol.282(5), 947–970 (2002).
  • Dvorak HF. Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing. N. Engl. J. Med.315(26), 1650–1659 (1986).
  • Briegel KJ. Embryonic transcription factors in human breast cancer. IUBMB Life58(3), 123–132 (2006).
  • Croci DO, Zacarias Fluck MF, Rico MJ et al. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol. Immunother.56(11), 1687–1700 (2007).
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3(11), 991–998 (2002).
  • Jain A, Patil VP, Fung J. Incidence of de novo cancer and lymphoproliferative disorders after liver transplantation in relation to age and duration of follow-up. Liver Transpl.14(10), 1406–1411 (2008).
  • Bhowmick NA, Moses HL. Tumor–stroma interactions. Curr. Opin. Genet. Dev.15(1), 97–101 (2005).
  • Kim JB, Stein R, O’Hare MJ. Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol.26(4), 173–185 (2005).
  • Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol.1, 119–150 (2006).
  • Brown LF, Guidi AJ, Schnitt SJ et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin. Cancer Res.5(5), 1041–1056 (1999).
  • Black MM, Kerpe S, Speer FD. Lymph node structure in patients with cancer of the breast. Am. J. Pathol.29(3), 505–521 (1953).
  • Whitford P, Alam SM, George WD, Campbell AM. Flow cytometric analysis of tumour-draining lymph nodes in breast cancer patients. Eur. J. Cancer28(2–3), 350–356 (1992).
  • Morton BA, Ramey WG, Paderon H, Miller RE. Monoclonal antibody-defined phenotypes of regional lymph node and peripheral blood lymphocyte subpopulations in early breast cancer. Cancer Res.46(4 Pt 2), 2121–2126 (1986).
  • Coronella-Wood JA, Hersh EM. Naturally occurring B-cell responses to breast cancer. Cancer Immunol. Immunother.52(12), 715–738 (2003).
  • Lee AH, Happerfield LC, Bobrow LG, Millis RR. Angiogenesis and inflammation in invasive carcinoma of the breast. J. Clin. Pathol.50(8), 669–673 (1997).
  • Bilik R, Mor C, Hazaz B,Moroz C. Characterization of T-lymphocyte subpopulations infiltrating primary breast cancer. Cancer Immunol. Immunother.28(2), 143–147 (1989).
  • Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J. Clin. Pathol.59(9), 972–977 (2006).
  • Dorn C, Knobloch C, Kupka M, Morakkabati-Spitz N, Schmolling J. Paraneoplastic neurological syndrome: patient with anti-Yo antibody and breast cancer: a case report. Arch. Gynecol. Obstet.269(1), 62–65 (2003).
  • Pittock SJ, Lucchinetti CF, Lennon VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann. Neurol.53(5), 580–587 (2003).
  • Tomkiel JE, Alansari H, Tang N et al. Autoimmunity to the M(r) 32,000 subunit of replication protein A in breast cancer. Clin. Cancer Res.8(3), 752–758 (2002).
  • Fernandez-Madrid F, Tang N, Alansari H et al. Autoantibodies to annexin XI-A and other autoantigens in the diagnosis of breast cancer. Cancer Res.64(15), 5089–5096 (2004).
  • Frenkel K, Karkoszka J, Glassman T et al. Serum autoantibodies recognizing 5-hydroxymethyl-2´-deoxyuridine, an oxidized DNA base, as biomarkers of cancer risk in women. Cancer Epidemiol. Biomarkers Prev.7(1), 49–57 (1998).
  • Lu H, Goodell V, Disis ML. Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer. J. Proteome Res.7(4), 1388–1394 (2008).
  • Gourevitch MM, von Mensdorff-Pouilly S, Litvinov SV et al. Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients. Br. J. Cancer72(4), 934–938 (1995).
  • von Mensdorff-Pouilly S, Gourevitch MM, Kenemans P et al. Humoral immune response to polymorphic epithelial mucin (MUC-1) in patients with benign and malignant breast tumours. Eur. J. Cancer32A(8), 1325–1331 (1996).
  • Lubin R, Zalcman G, Bouchet L et al. Serum p53 antibodies as early markers of lung cancer. Nat. Med.1(7), 701–702 (1995).
  • McNeel DG, Nguyen LD, Storer BE et al. Antibody immunity to prostate cancer associated antigens can be detected in the serum of patients with prostate cancer. J. Urol.164(5), 1825–1829 (2000).
  • Muller M, Meyer M, Schilling T et al. Testing for anti-p53 antibodies increases the diagnostic sensitivity of conventional tumor markers. Int. J. Oncol.29(4), 973–980 (2006).
  • Molina R, Barak V, van Dalen A et al. Tumor markers in breast cancer – European Group on Tumor Markers recommendations. Tumour Biol.26(6), 281–293 (2005).
  • Cho H, Hur HW, Kim SW et al. Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunol. Immunother.58(1), 15–23 (2009).
  • Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ. Neutrophil–lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol.91(3), 181–184 (2005).
  • Papa A, Emdin M, Passino C et al. Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin. Chim. Acta395(1–2), 27–31 (2008).
  • Zahorec R. Ratio of neutrophil to lymphocyte counts – rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy102(1), 5–14 (2001).
  • Asworth TR. A case of cancer in which cells similar to those in tumors were seen in the blood after death. Aust. Med. J.14, 146–149 (1869).
  • Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer13(4), 1033–1067 (2006).
  • Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett.253(2), 180–204 (2007).
  • Pusztai L, Cristofanilli M, Paik S. New generation of molecular prognostic and predictive tests for breast cancer. Semin. Oncol.34(2 Suppl. 3), S10–S16 (2007).
  • Slade MJ, Coombes RC. The clinical significance of disseminated tumor cells in breast cancer. Nat. Clin. Pract. Oncol.4(1), 30–41 (2007).
  • Ntoulia M, Stathopoulou A, Ignatiadis M et al. Detection of mammaglobin A-mRNA-positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin. Biochem.39(9), 879–887 (2006).
  • Hayes DF, Cristofanilli M, Budd GT et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res.12(14 Pt 1), 4218–4224 (2006).
  • Ignatiadis M, Xenidis N, Perraki M et al. Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J. Clin. Oncol.25(33), 5194–5202 (2007).
  • Xenidis N, Markos V, Apostolaki S et al. Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann. Oncol.18(10), 1623–1631 (2007).
  • Xenidis N, Perraki M, Kafousi M et al. Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J. Clin. Oncol.24(23), 3756–3762 (2006).
  • Mikhitarian K, Martin RH, Ruppel MB et al. Detection of mammaglobin mRNA in peripheral blood is associated with high grade breast cancer: interim results of a prospective cohort study. BMC Cancer8, 55 (2008).
  • Nakagawa T, Martinez SR, Goto Y et al. Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clin. Cancer Res.13(14), 4105–4110 (2007).
  • Reinholz MM, Nibbe A, Jonart LM et al. Evaluation of a panel of tumor markers for molecular detection of circulating cancer cells in women with suspected breast cancer. Clin.Cancer Res.11(10), 3722–3732 (2005).
  • Chen CC, Hou MF, Wang JY et al. Simultaneous detection of multiple mRNA markers CK19, CEA, c-Met, Her2/neu and hMAM with membrane array, an innovative technique with a great potential for breast cancer diagnosis. Cancer Lett.240(2), 279–288 (2006).
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet357(9255), 539–545 (2001).
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature454(7203), 436–444 (2008).
  • Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell13(1), 7–9 (2008).
  • Karin M. Nuclear factor-κB in cancer development and progression. Nature441(7092), 431–436 (2006).
  • Langowski JL, Zhang X, Wu L et al. IL-23 promotes tumour incidence and growth. Nature442(7101), 461–465 (2006).
  • Szlosarek PW, Balkwill FR. Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol.4(9), 565–573 (2003).
  • Voronov E, Shouval DS, Krelin Y et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA100(5), 2645–2650 (2003).
  • Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol.7(1), 41–51 (2007).
  • Tisdale MJ. Cachexia in cancer patients. Nat. Rev. Cancer2(11), 862–871 (2002).
  • Tisdale MJ. Biology of cachexia. J. Natl Cancer Inst.89(23), 1763–1773 (1997).
  • Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J.12(10), 871–880 (1998).
  • Acharyya S, Ladner KJ, Nelsen LL et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J. Clin. Invest.114(3), 370–378 (2004).
  • Wyke SM, Tisdale MJ. NF-kappaB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin proteasome system in skeletal muscle. Br. J. Cancer92(4), 711–721 (2005).
  • Boddaert MS, Gerritsen WR, Pinedo HM. On our way to targeted therapy for cachexia in cancer? Curr. Opin. Oncol.18(4), 335–340 (2006).
  • Adzic M, Niciforovic A, Vucic V et al. Systemic NF-κB activation in blood cells of breast cancer patients. Redox Rep.11(1), 39–44 (2006).
  • Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin. Chem.52(3), 345–351 (2006).
  • Borgono CA, Grass L, Soosaipillai A et al. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res.63(24), 9032–9041 (2003).
  • Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem.48(8), 1296–1304. (2002).
  • Hu Y, Zhang S, Yu J, Liu J, Zheng S. SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast14(4), 250–255 (2005).
  • Shi L, Shi L, Reid LH et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol.24(9), 1151–1161 (2006).
  • Canales RD, Luo Y, Willey JC et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol.24(9), 1115–1122 (2006).
  • Buyse M, Loi S, van’t Veer L et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst.98(17), 1183–1192 (2006).
  • van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347(25), 1999–2009 (2002).
  • Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351(27), 2817–2826 (2004).
  • Van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415(6871), 530–536. (2002).
  • Habel LA, Shak S, Jacobs MK et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res.8(3), R25 (2006).
  • Perou CM, Jeffrey SS, van de Rijn M et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA96(16), 9212–9217 (1999).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Ma XJ, Hilsenbeck SG, Wang W et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J. Clin. Oncol.24(28), 4611–4619 (2006).
  • Ma XJ, Wang Z, Ryan PD et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell5(6), 607–616 (2004).
  • Loi S, Haibe-Kains B, Desmedt C et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol.25(10), 1239–1246 (2007).
  • Sotiriou C, Wirapati P, Loi S et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst.98(4), 262–272 (2006).
  • Kim SJ, Dix DJ, Thompson KE et al. Effects of storage, RNA extraction, genechip type, and donor sex on gene expression profiling of human whole blood. Clin. Chem.53(6), 1038–1045 (2007).
  • Bieli C, Frei R, Schickinger V et al. Gene expression measurements in the context of epidemiological studies. Allergy63(12), 1633–1636 (2008).
  • Fan H, Hegde PS. The transcriptome in blood: challenges and solutions for robust expression profiling. Curr. Mol. Med.5(1), 3–10 (2005).
  • Dumeaux V, Lund E,Børresen-Dale AL. Comparison of globin RNA processing methods for genome-wide transcriptome analysis from whole-blood. Biomark. Med.2, 11–21 (2008).
  • Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med.147(3), 126–132 (2006).
  • Whitney AR, Diehn M, Popper SJ et al. Individuality and variation in gene expression patterns in human blood. Proc. Natl Acad. Sci. USA100(4), 1896–1901 (2003).
  • Eady JJ, Wortley GM, Wormstone YM et al. Variation in gene expression profiles of peripheral blood mononuclear cells from healthy volunteers. Physiol. Genomics22(3), 402–411 (2005).
  • Dumeaux V, Lund E, Børresen-Dale A-L. Comparison of globin RNA processing methods for genome-wide transcriptome analysis from whole-blood. Biomark. Med.2, 11–21 (2008).
  • Lampe JW, Stepaniants SB, Mao M et al. Signatures of environmental exposures using peripheral leukocyte gene expression: tobacco smoke. Cancer Epidemiol. Biomark. Prev.13(3), 445–453 (2004).
  • Ryder MI, Hyun W, Loomer P, Haqq C. Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke: implications for periodontal diseases. Oral Microbiol. Immunol.19(1), 39–49 (2004).
  • Dumeaux V, Johansen J, Borresen-Dale AL, Lund E. Gene expression profiling of whole-blood samples from women exposed to hormone replacement therapy. Mol. Cancer Ther.5(4), 868–876 (2006).
  • Wang Z, Neuburg D, Li C et al. Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Environ. Health Perspect.113(2), 233–241 (2005).
  • Forrest MS, Lan Q, Hubbard AE et al. Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ. Health Perspect.113(6), 801–807 (2005).
  • Amundson SA, Do KT, Shahab S et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat. Res.154(3), 342–346 (2000).
  • Twine NC, Stover JA, Marshall B et al. Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res.63(18), 6069–6075 (2003).
  • Solmi R, Ugolini G, Rosati G et al. Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer. BMC Cancer6, 250 (2006).
  • Burczynski ME, Peterson RL, Twine NC et al. Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J. Mol. Diagn.8(1), 51–61 (2006).
  • Osman I, Bajorin DF, Sun T-T et al. Novel blood biomarkers of human urinary bladder cancer. Clin.Cancer Res.12(11 Pt 1), 3374–3380 (2006).
  • Burczynski ME, Twine NC, Dukart G et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin. Cancer Res.11(3), 1181–1189 (2005).
  • Li Y, Elashoff D, Oh M et al. Serum circulating human mRNA profiling and its utility for oral cancer detection. J. Clin. Oncol.24(11), 1754–1760 (2006).
  • Han M, Liew CT, Zhang HW et al. Novel blood-based, five-gene biomarker set for the detection of colorectal cancer. Clin. Cancer Res.14(2), 455–460 (2008).
  • Sharma P, Sahni NS, Tibshirani R et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Res.7(5), 634–644 (2005).
  • Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev. Cell11(4), 441–450 (2006).
  • Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol.9(3), 219–230 (2008).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65(16), 7065–7070 (2005).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.