90
Views
9
CrossRef citations to date
0
Altmetric
Review

Update on genetic predisposition to breast cancer

, &
Pages 1103-1113 | Published online: 10 Jan 2014

References

  • McIntosh A, Shaw C, Evans G et al. Clinical guidelines and evidence review for the classification and care of women at risk of familial breast cancer. NICE Guideline CG014 (2004).
  • Broca P. Traite des Tumeurs. [Asselin]. Paris (1866).
  • Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am. J. Hum. Genet.48(2), 232–242 (1991).
  • Anderson DE, Badzioch MD. Familial breast cancer risks: effects of prostate and other cancers. Cancer72(1), 114–119 (1993).
  • Peto J, Mack TM. High constant incidence in twins and other relatives of women with breast cancer. Nat. Genet.26(4), 411–414 (2000).
  • Peto J, Collins N, Barfoot R et al. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J. Natl Cancer Inst.91(11), 943–949 (1999).
  • Neuhausen SL, Marshall CJ. Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer Res.54(23), 6069–6072 (1994).
  • Collins N, McManus R, Wooster R et al. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. Oncogene10(8), 1673–1675 (1995).
  • Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br. J. Cancer83(10), 1301–1308 (2000).
  • Thompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J. Natl Cancer Inst.94(18), 1358–1365 (2002).
  • Hall JM, Lee MK, Newman B et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science250(4988), 1684–1689 (1990).
  • Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science266(5182), 66–71 (1994).
  • Boulton SJ. Cellular functions of the BRCA tumour-suppressor proteins. Biochem. Soc. Trans.34(Pt 5), 633–645 (2006).
  • Eyfjord JE, Bodvarsdottir SK. Genomic instability and cancer: networks involved in response to DNA damage. Mutat. Res.592(1–2), 18–28 (2005).
  • Simard J, Tonin P, Durocher F et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nat. Genet.8(4), 392–398 (1994)
  • Mazoyer S. Genomic rearrangements in the BRCA1 and BRCA2 genes. Hum. Mutat.25(5), 415–422 (2005).
  • Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers: Breast Cancer Linkage Consortium. Am. J. Hum. Genet.56(1), 265–271 (1995).
  • Antoniou A, Pharoah PD, Narod S et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet.72(5), 1117–1130 (2003).
  • Evans DG, Shenton A, Woodward E et al. Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a clinical cancer genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer8, 155(2008).
  • Brose MS, Rebbeck TR, Calzone KA et al. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J. Natl Cancer Inst.94(18), 1365–1372 (2002).
  • Stratton MR, Ford D, Neuhasen S et al. Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nat. Genet.7(1), 103–107 (1994).
  • Friedman LS, Gayther SA, Kurosaki T et al. Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population. Am. J. Hum. Genet.60(2), 313–319 (1997).
  • Ford D, Easton DF, Stratton M et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet.62(3), 676–689 (1998).
  • Tai YC, Domchek S, Parmigiani G et al. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl Cancer Inst.99(23), 1811–1814 (2007).
  • Breast cancer linkage consortium.: pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases: Breast Cancer Linkage Consortium. Lancet349(9064), 1505–1510 (1997).
  • Lakhani SR. The pathology of hereditary breast cancer. Dis. Markers15(1–3), 113–114 (1999).
  • Lakhani SR, Van De Vijver MJ, Jacquemier J et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol.20(9), 2310–2318 (2002).
  • Foulkes WD, Stefansson IM, Chappuis PO et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst.95(19), 1482–1485 (2003).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100(14), 8418–8423 (2003).
  • Easton DF, Bishop DT, Ford D et al. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet.52(4), 678–701 (1993).
  • Wooster R, Neuhausen SL, Mangion J et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science265(5181), 2088–2090 (1994).
  • Wooster R, Bignell G, Lancaster J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature378(6559), 789–792 (1995).
  • Tavtigian SV, Simard J, Rommens J et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet.12(3), 333–337 (1996).
  • Thorslund T, West SC. BRCA2: a universal recombinase regulator. Oncogene26(56), 7720–7730 (2007).
  • Roa BB, Boyd AA, Volcik K et al. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat. Genet.14(2), 185–187 (1996).
  • Thorlacius S, Olafsdottir G, Tryggvadottir L et al. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat. Genet.13(1), 117–119 (1996).
  • Johannesdottir G, Gudmundsson J, Bergthorsson JT et al. High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res.56(16), 3663–3665 (1996).
  • Gayther SA, Mangion J, Russell P et al. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat. Genet.15(1), 103–105 (1997).
  • Thompson D, Easton D. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am. J. Hum. Genet.68(2), 410–419 (2001).
  • Evans DG, Bulman M, Young K et al. BRCA1/2 mutation analysis in male breast cancer families from North West England. Fam. Cancer7(2), 113–117 (2008).
  • The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers.The Breast Cancer Linkage Consortium. J. Natl Cancer Inst.91(15), 1310–1316 (1999).
  • Howlett NG, Taniguchi T, Olson S et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science297(5581), 606–609 (2002).
  • Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood107(11), 4223–4233 (2006).
  • Reid S, Renwick A, Seal S et al. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J. Med. Genet.42(2), 147–151 (2005).
  • Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science250(4985), 1233–1238 (1990).
  • Srivastava S, Zou ZQ, Pirollo K et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature348(6303), 747–749 (1990).
  • Garber JE, Goldstein AM, Kantor AF et al. Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res.51(22), 6094–6097 (1991).
  • Liaw D, Marsh DJ, Li J et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet.16(1), 64–67 (1997).
  • Hearle N, Schumacher V, Menko FH et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin. Cancer Res.12(10), 3209–3215 (2006).
  • Pharoah PD, Guilford P, Caldas C. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology121(6), 1348–1353 (2001).
  • Smith P, McGuffog L, Easton DF et al. A genome wide linkage search for breast cancer susceptibility genes: genes chromosomes Cancer45(7), 646–655 (2006).
  • Antoniou AC, Pharoah PD, McMullan G et al. Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet. Epidemiol.21(1), 1–18 (2001).
  • Meijers-Heijboer H, van den OA, Klijn J et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet.31(1), 55–59 (2002).
  • Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair (Amst.)3(8–9), 1039–1047 (2004).
  • Swift M, Reitnauer PJ, Morrell D et al. Breast and other cancers in families with ataxia-telangiectasia. N. Engl. J. Med.316(21), 1289–1294 (1987).
  • Gatti RA, Berkel I, Boder E et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature336(6199), 577–580 (1988).
  • Savitsky K, Bar-Shira A, Gilad S et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science268(5218), 1749–1753 (1995).
  • Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci.31(7), 402–410 (2006).
  • Renwick A, Thompson D, Seal S et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet.38(8), 873–875 (2006).
  • Cantor SB, Bell DW, Ganesan S et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell105(1), 149–160 (2001).
  • Peng M, Litman R, Jin Z et al. BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene25(15), 2245–2253 (2006).
  • Seal S, Thompson D, Renwick A et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat. Genet.38(11), 1239–1241 (2006).
  • Levitus M, Waisfisz Q, Godthelp BC et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat. Genet.37(9), 934–935 (2005).
  • Rahman N, Seal S, Thompson D et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet.39(2), 165–167 (2007).
  • Reid S, Schindler D, Hanenberg H et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet.39(2), 162–164 (2007).
  • Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat. Genet.40(1), 17–22 (2008).
  • Heikkinen K, Rapakko K, Karppinen SM et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis27(8), 1593–1599 (2006).
  • Tommiska J, Seal S, Renwick A et al. Evaluation of RAD50 in familial breast cancer predisposition. Int. J. Cancer118(11), 2911–2916 (2006).
  • Smith A, Moran A, Boyd MC et al. Phenocopies in BRCA1 and BRCA2 families: evidence for modifier genes and implications for screening. J. Med. Genet.44(1), 10–15 (2007).
  • Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: Results from the Breast Cancer Association Consortium. J. Natl Cancer Inst.98(19), 1382–1396 (2006).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.39(7), 865–869 (2007).
  • Hunter DJ, Kraft P, Jacobs KB et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet.39(7), 870–874 (2007).
  • Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature447(7148), 1087–1093 (2007).
  • Cox A, Dunning AM, Garcia-Closas M et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet.39(3), 352–358 (2007).
  • Gold B, Kirchhoff T, Stefanov S et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc. Natl Acad. Sci. USA105(11), 4340–4345 (2008).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.40(6), 703–706 (2008).
  • Zheng W, Long J, Gao YT et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet.41(3), 324–328 (2009).
  • Fletcher O, Johnson N, Gibson L et al. Association of genetic variants at 8q24 with breast cancer risk. Cancer Epidemiol. Biomarkers Prev.17(3), 702–705 (2008).
  • Garcia-Closas M, Chanock S. Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin. Cancer Res.14(24), 8000–8009 (2008).
  • Meyer KB, Maia AT, O’Reilly M et al. Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol.6(5), e108(2008).
  • Domchek SM, Weber BL. Clinical management of BRCA1 and BRCA2 mutation carriers. Oncogene25(43), 5825–5831 (2006).
  • Pharoah PD, Antoniou AC, Easton DF et al. Polygenes, risk prediction, and targeted prevention of breast cancer. N. Engl. J. Med.358(26), 2796–2803 (2008).
  • Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell108(2), 171–182 (2002).
  • Kennedy RD, Quinn JE, Mullan PB et al. The role of BRCA1 in the cellular response to chemotherapy. J. Natl Cancer Inst.96(22), 1659–1668 (2004).
  • Lakhani SR, Reis-Filho JS, Fulford L et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res.11(14), 5175–5180 (2005).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434(7035), 917–921 (2005).
  • Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361(2) 123–134 (2009).
  • Morrell D, Cromartie E, Swift M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl Cancer Inst.77(1), 89–92 (1986).
  • Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene25(43), 5875–5884 (2006).
  • Antoniou AC, Spurdle AB, Sinilnikova OM et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am. J. Hum. Genet.82(4), 937–948 (2008).
  • Antoniou AC, Sinilnikova OM, Simard J et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am. J. Hum. Genet.81(6), 1186–1200 (2007).
  • Hughes DJ. Use of association studies to define genetic modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Fam. Cancer7(3), 233–244 (2008).
  • Brohet RM, Goldgar DE, Easton DF et al. Oral contraceptives and breast cancer risk in the international BRCA1/2 carrier cohort study: a report from EMBRACE, GENEPSO, GEO-HEBON, and the IBCCS Collaborating Group. J. Clin. Oncol.25(25), 3831–3836 (2007).
  • Chang-Claude J, Andrieu N, Rookus M et al. Age at menarche and menopause and breast cancer risk in the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol. Biomarkers Prev.16(4), 740–746 (2007).
  • Mitchell G, Antoniou AC, Warren R et al. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res.66(3), 1866–1872 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.