234
Views
68
CrossRef citations to date
0
Altmetric
Review

Novel therapeutic agents for osteosarcoma

&
Pages 511-523 | Published online: 10 Jan 2014

References

  • Link MP, Gebhardt MC, Meyers PA. Osteosarcoma. In: Principles and Practice of Pediatric Oncology (4th Edition). Pizzo PA, Poplack DG (Eds.). Lippincott Williams & Wilkins, PA, USA 1051–1080 (2002).
  • Li FP, Fraumeni JF Jr, Mulvihill JJ et al. A cancer family syndrome in twenty-four kindreds. Cancer Res.48, 5358–5362 (1988).
  • Wong FL, Boice JD, Abramson DH et al. Cancer incidence after retinoblastoma: radiation dose and sarcoma risk. JAMA278, 1262–1267 (1997).
  • Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N. Engl. J. Med.341(5), 342–352 (1999).
  • Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist9(4), 422–441 (2004).
  • Meyers PA, Gorlick R. Osteosarcoma. Pediatr. Clin. North Am.44(4), 973–989 (1997).
  • Link MP, Goorin AM, Miser AW et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med.314(25), 1600–1606 (1986).
  • Eilber FR, Rosen G. Adjuvant chemotherapy for osteosarcoma. Semin. Oncol.16(4), 312–322 (1989).
  • Glasser DB, Lane JM, Huvos AG, Marcove RC, Rosen G. Survival, prognosis, and therapeutic response in osteogenic sarcoma. The Memorial Hospital experience. Cancer69(3), 698–708 (1992).
  • Gorlick R, Meyers PA. Osteosarcoma necrosis following chemotherapy: innate biology versus treatment-specific. J. Pediatr. Hematol. Oncol.25(11), 840–841 (2003).
  • Kempf-Bielack B, Bielack SS, Jurgens H et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). J. Clin. Oncol.23, 559–568 (2005).
  • Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here? Paediatr. Drugs10(5), 315–327 (2008).
  • Woods, KA, Camacho-Hubner C, Savage MO et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med.335, 1363–1367 (1996).
  • Abuzzahab MJ, Schneider A, Goddard A et al. IGF-1 receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med.349, 2211–2222 (2003).
  • Riedemann J, Macaulay VM. IGF1R signalling and its inhibition. Endocr. Relat. Cancer13(Suppl. 1), S33–S43 (2006).
  • Ma J, Pollak MN, Giovannucci E et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J. Natl Cancer Inst.91, 151–156 (1999).
  • Chan JM, Stampfer MJ, Giovannucci E et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science279, 563–566 (1998).
  • Hankinson SE, Willett WC, Colditz GA et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet351, 1393–1396 (1998).
  • Yu H, Spitz MR, Mistry J et al. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case–control analysis. J. Natl Cancer Inst.91, 151–156 (1999).
  • Pollak MN, Polychronakos C, Richard M. Insulin like growth factor I: a potent mitogen for human osteogenic sarcoma. J. Natl Cancer Inst.82, 301–305 (1990).
  • Ouban A, Muraca P, Yeatman T et al. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum. Pathol.34, 803–808 (2003).
  • Shimizu C, Hasegawa T, Tani Y et al. Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum. Pathol.35, 1537–1542 (2004).
  • Sekyi-Out A, Bell RS, Ohashi C, Pollak M, Andrulis IL. Insulin-like growth factor 1 (IGF-1) receptors, IGF-1, and IGF-2 are expressed in primary human sarcomas. Cancer Res.55, 129–134 (1995).
  • Kaleko M, Rutter WJ, Miller D. Overexpression of the human insulin-like growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol. Cell Biol.10, 464–473 (1990).
  • Mansky PJ, Liewehr DJ, Steinberg SM et al. Treatment of metastatic osteosarcoma with the somatostatin analog OncoLar: significant reduction of insulin-like growth factor-1 serum levels. J. Pediatr. Hematol. Oncol.24, 440–446 (2002).
  • Benini S, Baldini N, Manara MC et al. Redundancy of autocrine loops in human osteosarcoma cells. Int. J. Cancer80, 581–588 (1999).
  • Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol. Cancer Ther.6(1), 1–11 (2007).
  • Ji QS, Mulvihill M, Rosenfeld-Franklin M et al. Preclinical characterization of OSI-906: a novel IGF-1R kinase inhibitor in clinical trials. Presented at: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics Meeting Abstracts. San Francisco, CA, USA, 22–26 October 2007 (Abstract C192).
  • Kolb EA, Gorlick R, Houghton PJ et al. Initial testing (stage 1) of a monoclonal antibody (SCH717454) against the IGF-1 receptor by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer50, 1190–1197 (2008).
  • Tolcher AW, Rothenberg ML, Rodon J et al. A Phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J. Clin. Oncol.25(18 Suppl.), S118 (2007).
  • Haluska P, Shaw HM, Batzel GN et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin. Cancer Res.13(19) 5834–5840 (2007).
  • Rodon J, Patnaik A, Stein M et al. A Phase I study of q3W R1507, a human monoclonal antibody IGF-1R (insulin-like growth factor receptor) antagonist in patients with advanced solid tumors. Presented at: AACR-NCI-EORTC International Conference: Molectular Targets and Cancer Therapeutics. San Francisco, CA, USA, 22–26 October 2007.
  • Hudis C. Trastuzumab – mechanism of action and use in clinical practice. N. Engl. J. Med.357, 39–51 (2007).
  • Onda M, Matsuda S, Higaki S et al. ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer77, 71–78 (1996).
  • Yarden Y. The EGFR family and its ligands in human cancer: signaling mechanisms and therapeutic opportunities. Eur. J. Cancer37(Suppl. 4), S3–S8 (2001).
  • Slamon DJ, Clark GM, Wong SG, Lewin WJ, Ulrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235, 177–182 (1987).
  • Wright C, Angus B, Nicholson S et al. Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res.49, 2087–2090 (1989).
  • Hynes NE. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development, significance as a prognostic factor, and potential as a target for cancer therapy. Sem. Cancer Biol.4, 19–26 (1993).
  • Zhou H, Randall RL, Brothman AR, Maxwell T, Coffin CM, Goldsby RE. Her-2/neu expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification. J. Pediatr. Hematol. Oncol.25, 27–32 (2003).
  • Akatsuka T, Wada T, Kokai Y et al. ErbB2 expression is correlated with increased survival of patients with osteosarcoma. Cancer94, 1397–1404 (2002).
  • Gorlick R, Huvos AG, Heller G et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J. Clin. Oncol.17, 2781–2788 (1999).
  • Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and HER-2 with nuclear expression of HER-4 in primary osteosarcoma. Cancer Res.64, 2047–2053 (2004).
  • Scotlandi K, Manara MC, Hattinger CM et al. Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing’s sarcoma. Eur. J. Cancer41, 1349–1361 (2004).
  • Somers GR, Ho M, Zielenska M, Squire JA, Thorner PS. HER2 amplification and overexpression is not present in pediatric osteosarcoma: a tissue microarray study. Pediatr. Dev. Pathol.8, 525–532 (2005).
  • Thomas DG, Giordano TJ, Sanders D, Biermann JS, Baker L. Absence of HER2 /neu gene expression in osteosarcoma and skeletal Ewing’s sarcoma. Clin. Cancer Res.8, 788–793 (2002).
  • Maitra A, Wanzer D, Weinber AG, Ashfaq R. Amplification of the HER-2 /neu oncogene is uncommon in pediatric osteosarcomas. Cancer92, 677–683 (2001).
  • Kilpatrick SE, Geisinger KR, King TS et al. Clinicopathologic analysis of HER-2/neu immunoexpression among various histologic subtypes and grades of osteosarcoma. Mod. Pathol.14, 1277–1283 (2001).
  • Anninga JK, van der Vijver MJ, Cleton-Jansen AM et al. Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. Eur. J. Cancer40, 963–970 (2004).
  • McGary EC, Weber K, Mills L et al. Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. Clin. Cancer Res.8, 3584–3591 (2002).
  • Sulzbacher I, Traxler M, Mosberger I, Lang S, Chott A. Platelet-derived growth factor-AA and -α receptor expression suggests an autocrine and/or paracrine loop in osteosarcoma. Mod. Pathol.13, 632–637 (2000).
  • Kubo T, Piperdi S, Rosenblum J et al. Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer112(10), 2119–2129 (2008).
  • Buchdunger E, Cioffi CL, Law N et al. Abl protein-tyrosine kinase inhibitor ST1571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther.295, 39–145 (2000).
  • Bond M, Bernstein ML, Pappo A et al. A Phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children’s Oncology Group study. Pediatr. Blood Cancer50, 254–258 (2008).
  • Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer7(4), 295–308 (2007).
  • Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer4, 335–348 (2004).
  • Bjornsti MA and Houghton PJ. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer4, 335–348 (2004).
  • Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist12, 1007–1018 (2007).
  • Wan X, Mendoza A, Khanna C, Helman LJ. Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res.65, 2406–2411 (2005).
  • Houghton PJ, Morton CL, Kolb EA et al. Initial testing (Stage 1) of the mTOR inhibitor rapamycin by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer50, 799–805 (2008).
  • Mita M, Rowinsky E, Mita A et al. A Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of AP23573, an mTOR inhibitor administered IV daily × 5 every other week in patients with refractory or advanced malignancies. J. Clin. Oncol.22(Suppl. 14), 3076a (2004).
  • Chawla SP, Tolcher AW, Staddon AP et al. Updated results of a Phase II trial of AP23573, a novel mTOR inhibitor, in patients with advanced soft tissue or bone sarcoma. J. Clin. Oncol.24(Suppl. 18), 9505a (2006).
  • Raymond E, Alexandre J, Faivre S et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with cancer. J. Clin. Oncol.22, 2336–2347 (2004).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–918 (2004).
  • Chan S, Scheulen ME, Johnston S et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol.23, 5314–5322 (2005).
  • Witzig TE, Geyer Sm, Ghobrial I et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol.23, 5347–5356 (2005).
  • O’Donnell A, Faivre S, Judson I et al. A Phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumors. Proc. Am. Soc. Clin. Oncol.22, 803a (2003).
  • Amato RJ, Misellati A, Khan M et al. A Phase II trial of RAD001 in patients with metastatic renal cell carcinoma (MRCC). J. Clin. Oncol.24(Suppl. 18), 4530a (2006).
  • Hudes G, Carducci M, Tomczak P et al. A Phase III, randomized, 3-arm study of temsirolimus (TERSR) or interferon-α (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma. J. Clin. Oncol.24(Suppl. 18), LBA4a (2006).
  • Fouladi M, Laningham F, Wu J et al. Phase I study of everolimus in pediatric patients with refractory solid tumors. J. Clin. Oncol.25, 4806–4812 (2007).
  • O’Reilly KE, Rojo F, She QB et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66(3), 1500–1508 (2006).
  • Strong JE, Coffey MC, Tang D, Sabininin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO17(12), 3351–3362 (1998).
  • Brose MS, Volpe P, Feldman M et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res.62, 6997–7000 (2002).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol.9(7), 517–531 (2008).
  • Vidal L, Pandha H, Spicer J et al. A Phase I study of Reolysin given intravenously to patients with advanced malignancies. 2006 ASCO Annual Meeting Proceedings Part I. J. Clin. Oncol.24(18 Suppl.), 3064 (2006).
  • Gollamudi R, Desai K, Chaudhary I et al. Pharmacodynamic and safety study of Reolysin in patients with advanced solid tumors. 2007 ASCO Annual Meeting Proceedings Part I. J. Clin. Oncol.25 (18S), 14004 (2007).
  • Zhang WE, Kolb EA. Reolysin, and unmodified reovirus, has significant anti-tumor activity in childhood sarcomas. Presented at: The AACR 97th Annual Meeting 2006. Washington, DC, USA, 1–5 April 2006 (Abstract 4331).
  • Soefje SA, Sarantopoulos J, Sankhala KK, Mita AC. A Phase II study of intravenous Reolysin (wild-type reovirus) in the treatment of patients with bone and soft tissue sarcomas metastatic to the lung. J. Clin. Oncol.20, 10568 (2008).
  • Maki, RG. Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future. Oncologist12, 999–1006 (2007).
  • Leu KM, Ostruszka LJ, Shewach et al. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J. Clin. Oncol.22, 1706–1712 (2004).
  • Navid F, Willert JR, McCarville MB et al. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer113(2), 419–425 (2008).
  • Gorlick R, Goker E, Trippett T, Waltham M, Banerjee D, Bertino JR. Intrinsic and acquired resistance to methotrexate in acute leukemia. N. Engl. J. Med.11, 5–14 (1996).
  • Guo W, Healey JH, Meyers PA et al. Mechanisms of methotrexate resistance in osteosarcoma. Clin. Cancer Res.5, 621–627 (1999).
  • Trippett T, Meyers P, Gorlick R, Steinherz P, Wollner N, Bertino JR. High dose trimetrexate with leucovorin protection in recurrent childhood malignancies: a Phase II trial. Presented at: The 35th ASCO Annual Meeting. Atlanta, GA, USA, 15–18 May 1999 (Abstract 889).
  • Shih C, Chen VJ, Gossett LS et al. LY231514, a pyrrolo[2,3-D]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res.57(6), 1116–1123 (1997).
  • Malempati S, Nicholson HS, Reid JM et al. Phase I trial and pharmacokinetic study of pemetrexed in children with refractory solid tumors: The Children’s Oncology Group. J. Clin. Oncol.25, 1505–1511 (2007).
  • Chou AJ, Bell MD, Mackinson C, Gupta R, Meyers PA, Gorlick R. Phase Ib/IIa study of sustained release lipid inhalation targeting cisplatin by inhalation in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. ASCO Annual Meeting Proceedings Part I. J. Clin. Oncol.25, 18S, 9525 (2007).
  • Chidiac T, Budd GT, Pelley R et al. Phase II trial of liposomal doxorubicin (Doxil) in advanced soft tissue sarcomas. Invest. New Drugs18, 253–259 (2000).
  • Judson I, Radford JA, Harris M et al. Randomised Phase II trial of pegylated liposomal doxorubicin (DOXIL/CAELYX) versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma: a study by the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer37, 870–877 (2001).
  • Muggia FM. Liposomal encapsulated anthracyclines: new therapeutic horizons. Curr. Oncol. Rep.3, 156–162 (2001).
  • Skubitz KM. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Invest.21, 167–176 (2003).
  • Alberts DS, Muggia FM, Carmichael J et al. Efficacy and safety of liposomal anthracyclines in Phase I/II clinical trials. Semin. Oncol.31, 53–90 (2004).
  • Diel IJ, Solomayer EF, Bastert G. Bisphosphonates and the prevention of metastasis: first evidence from preclinical and clinical studies. Cancer88, 3080–3088 (2005).
  • O’Keefe RJ, Guise TA. Molecular mechanisms of bone metastasis and therapeutic implications. Clin. Orthop. Relat. Res.415(Suppl.), S100–S104 (2003).
  • Ashton JA, Farese JP, Milner RJ, Lee‑Ambrose LM, van Gilder JM. Investigation of the effect of pamidronate disodium on the in vitro viability of osteosarcoma cells from dogs. Am. J. Vet. Res.66, 885–891 (2005).
  • Cheng YY, Huang L, Lee KM, Li K, Kumta SM. Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr. Blood Cancer42, 410–415 (2004).
  • Sonnemann J, Eckervogt V, Truckenbrod B, Boos J, Winkelmann W, van Valen F. The bisphosphonate pamidronate is a potent inhibitor of human osteosarcoma cell growth in vitro. Anticancer Drugs12(5), 459–465 (2001).
  • Ory B, Heymann MF, Kamijo A, Gouin F, Heymann D, Redini F. Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer104, 2522–2529 (2005).
  • Healey J. The epidemic of chemotherapy-related osteoporosis. Curr. Opin. Orthop.10, 331–333 (1999).
  • Jones DH, Nakashima T, Sanchez OH et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature440, 692–696 (2006).
  • Lipton A, Steger GG, Figeroa J et al. Randomized active-controlled Phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J. Clin. Oncol.25(28), 4431–4437 (2007).
  • Lipton A, Steger GG, Figueroa J et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin. Cancer Res.14(20), 6690–6696 (2008).
  • Thomas D, Chawla SP, Skubitz K et al. Denosumab treatment of giant cell tumor of bone: interim analysis of an open-label Phase II study. J. Clin. Oncol.26(Suppl.), 10500 (2008).
  • DuBois S, Demetri G. Markers of angiogenesis and clinical freatures in patients with sarcoma. Cancer109 (5), 813–819 (2007).
  • Maeda H, Chung Y, Ogawa Y et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer77, 858–863 (1996).
  • Ishigami SI, Arii S, Niwano M et al. Predictive value of VEGF in metastasis and prognosis of human colorectal cancer. Br. J. Cancer76, 418–422 (1998).
  • Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S. Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Cancer79, 206–213 (1997).
  • Kaya M, Wada T, Akatsuka T et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin. Cancer Res.6, 572–577 (2000).
  • Charity RM, Foukas AF, Deshmukh NS, Grimer RJ. Vascular endothelial growth factor expression in osteosarcoma. Clin. Orthop. Relat. Res.448, 193–198 (2006).
  • Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Eng. J. Med.350(23), 2335–2342 (2004).
  • Maris JM, Courtright J, Houghton PJ et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr. Blood Cancer50, 581–587 (2008).
  • MacEwen EG, Kurzman ID, Rosenthal RC et al. Therapy of osteosarcoma in dogs with intravenous injection of liposome encapsulated muramyl tripeptide. J. Natl Cancer Inst.81, 935–936 (1989).
  • Kleinerman ES. Biologic therapy for osteosarcoma using liposome-encapsulated muramyl tripeptide. Hematol. Oncol. Clin. North Am.9, 927–938 (1995).
  • Meyers PA, Schwartz CL, Krailo M et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol.23, 2004–2011 (2005).
  • Meyers PA, Schwartz CL, Krailo MD et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival- a report from the Children’s Oncology Group. J. Clin. Oncol.26, 633–638 (2008).
  • Hunsberger S, Freidlin B, Smith M. Complexities in interpretation of osteosarcoma clinical trial results. J. Clin. Oncol.26(18), 3103–3104 (2008).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90, 3539–3543 (1993).
  • Anderson PM, Markovic SN, Sloan JA et al. Aerosol granulocyte macrophage-colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin. Cancer Res.5, 2316–2323 (1999).
  • Anderson P, Aguilera D, Pearson M, Woo S. Outpatient chemotherapy plus radiotherapy in sarcomas: improving cancer control with radiosensitizing agents. Cancer Control15, 38–45 (2008).
  • Anderson PM, Wiseman GA, Dispenzieri A et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J. Clin. Oncol.20, 189–196 (2002).
  • Anderson PM, Wiseman GA, Erlandson L et al. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma. Clin. Cancer Res.11, 6895–6900 (2005).
  • Fagioli F, Aglietta M, Tienghi A et al. High-dose chemotherapy in the treatment of relapsed osteosarcoma: an Italian Sarcoma Group Study. J. Clin. Oncol.20, 2150–2156 (2002).
  • Sauerbrey A, Bielack S, Kempf-Bielack B et al. High-dose chemotherapy and autologous hematopoietic stem cell transplantation as salvage therapy for relapsed osteosarcoma. Bone Marrow Transplant.27, 933–937 (2001).
  • Fagioli F, Biasin E, Mereuta OM et al. Poor prognosis osteosarcoma: new therapeutic approach. Bone Marrow Transplant.41(Suppl.), S131–S134 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.