65
Views
21
CrossRef citations to date
0
Altmetric
Theme: Sarcoma - Review

Clinical applications of positron emission tomography in sarcoma management

, , , &
Pages 195-204 | Published online: 10 Jan 2014

References

  • Plathow C, Weber WA. Tumor cell metabolism imaging. J. Nucl. Med.49(Suppl. 2), 43S–63S (2008).
  • Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer2(9), 683–693 (2002).
  • Buerkle A, Weber WA. Imaging of tumor glucose utilization with positron emission tomography. Cancer Metastasis Rev.27(4), 545–554 (2008).
  • Di Chiro G. Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest. Radiol.22(5), 360–371 (1987).
  • Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology164(2), 521–526 (1987).
  • Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur. J. Nucl. Med. Mol. Imaging37(7), 1408–1425 (2009).
  • Kern KA, Brunetti A, Norton JA et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J. Nucl. Med.29(2), 181–186 (1988).
  • Schulte M, Brecht-Krauss D, Heymer B et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J. Nucl. Med.41(10), 1695–1701 (2000).
  • Schulte M, Brecht-Krauss D, Heymer B et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur. J. Nucl. Med.26(6), 599–605 (1999).
  • Adler LP, Blair HF, Makley JT et al. Noninvasive grading of musculoskeletal tumors using PET. J. Nucl. Med.32(8), 1508–1512 (1991).
  • Nieweg OE, Pruim J, van Ginkel RJ et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. J. Nucl. Med.37(2), 257–261 (1996).
  • Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur. J. Nucl. Med. Mol. Imaging33(11), 1290–1295 (2006).
  • Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging33(6), 683–691 (2006).
  • Punt SE, Eary JF, O’Sullivan J, Conrad EU. Fluorodeoxyglucose positron emission tomography in leiomyosarcoma: imaging characteristics. Nucl. Med. Commun.30(7), 546–549 (2009).
  • Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann. Surg.231(3), 380–386 (2000).
  • Charest M, Hickeson M, Lisbona R, Novales-Diaz JA, Derbekyan V, Turcotte RE. FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur. J. Nucl. Med. Mol. Imaging DOI: 10.1007/s00259-009-1203-0 (2009) (Epub ahead of print).
  • Hicks RJ. Functional imaging techniques for evaluation of sarcomas. Cancer Imaging5(1), 58–65 (2005).
  • Jager PL, Hoekstra HJ, Leeuw J, van der Graaf WT, de Vries EG, Piers D. Routine bone scintigraphy in primary staging of soft tissue sarcoma: is it worthwhile? Cancer89(8), 1726–1731 (2000).
  • Tateishi U, Hosono A, Makimoto A et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann. Nucl. Med.23(2), 155–161 (2009).
  • Mody RJ, Bui C, Hutchinson RJ et al. FDG PET imaging of childhood sarcomas. Pediatr. Blood Cancer54(2), 222–227 (2010).
  • Volker T, Denecke T, Steffen I et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J. Clin. Oncol.25(34), 5435–5441 (2007).
  • Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J. Nucl. Med.48(12), 1932–1939 (2007).
  • Piperkova E, Mikhaeil M, Mousavi A et al. Impact of PET and CT in PET/CT studies for staging and evaluating treatment response in bone and soft tissue sarcomas. Clin. Nucl. Med.34(3), 146–150 (2009).
  • Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur. J. Nucl. Med.27(9), 1305–1311 (2000).
  • Franzius C, Daldrup-Link HE, Sciuk J et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. Ann. Oncol.12(4), 479–486 (2001).
  • Iagaru A, Chawla S, Menendez L, Conti PS. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl. Med. Commun.27(10), 795–802 (2006).
  • Pisters PW, Patel SR, Varma DG et al. Preoperative chemotherapy for stage IIIB extremity soft tissue sarcoma: long-term results from a single institution. J. Clin. Oncol.15(12), 3481–3487 (1997).
  • DeLaney TF, Spiro IJ, Suit HD et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys.56(4), 1117–1127 (2003).
  • Kraybill WG, Harris J, Spiro IJ et al. Phase II study of neoadjuvant chemotherapy and radiation therapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: Radiation Therapy Oncology Group Trial 9514. J. Clin. Oncol.24(4), 619–625 (2006).
  • Benz MR, Czernin J, Allen-Auerbach MS et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin. Cancer Res.15(8), 2856–2863 (2009).
  • Weber WA, Figlin R. Monitoring cancer treatment with PET/CT: does it make a difference? J. Nucl. Med.48(Suppl. 1), 36S–44S (2007).
  • DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann. Surg.231(1), 51–58 (2000).
  • Connolly EM, Gaffney E, Reynolds JV. Gastrointestinal stromal tumours. Br. J. Surg.90(10), 1178–1186 (2003).
  • Demetri GD, von Mehren M, Blanke CD et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347(7), 472–480 (2002).
  • Choi H. Response evaluation of gastrointestinal stromal tumors. Oncologist13(Suppl. 2), 4–7 (2008).
  • Stroobants S, Goeminne J, Seegers M et al.18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur. J. Cancer39(14), 2012–2020 (2003).
  • Antoch G, Kanja J, Bauer S et al. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J. Nucl. Med.45(3), 357–365 (2004).
  • Gayed I, Vu T, Iyer R et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J. Nucl. Med.45(1), 17–21 (2004).
  • Jager PL, Gietema JA, van der Graaf WT. Imatinib mesylate for the treatment of gastrointestinal stromal tumours: best monitored with FDG PET. Nucl. Med. Commun.25(5), 433–438 (2004).
  • Van den Abbeele AD. The lessons of GIST–PET and PET/CT: a new paradigm for imaging. Oncologist13(Suppl. 2), 8–13 (2008).
  • Holdsworth CH, Badawi RD, Manola JB et al. CT and PET: early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. AJR Am. J. Roentgenol.189(6), W324–W330 (2007).
  • Prior JO, Montemurro M, Orcurto MV et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J. Clin. Oncol.27(3), 439–445 (2009).
  • Evilevitch V, Weber WA, Tap WD et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin. Cancer Res.14(3), 715–720 (2008).
  • Schuetze SM, Rubin BP, Vernon C et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer103(2), 339–348 (2005).
  • Cheon GJ, Kim MS, Lee JA et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J. Nucl. Med.50(9), 1435–1440 (2009).
  • Costelloe CM, Macapinlac HA, Madewell JE et al.18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J. Nucl. Med.50(3), 340–347 (2009).
  • Hamada K, Tomita Y, Inoue A et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann. Nucl. Med.23(1), 89–95 (2009).
  • Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer94(12), 3277–3284 (2002).
  • Dimitrakopoulou-Strauss A, Strauss LG, Egerer G et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J. Nucl. Med.51(4), 551–558 (2010).
  • Young H, Baum R, Cremerius U et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer35(13), 1773–1782 (1999).
  • Shankar LK, Hoffman JM, Bacharach S et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J. Nucl. Med.47(6), 1059–1066 (2006).
  • Arush MW, Israel O, Postovsky S et al. Positron emission tomography/computed tomography with 18Fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr. Blood Cancer49(7), 901–905 (2007).
  • Franzius C, Daldrup-Link HE, Wagner-Bohn A et al. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann. Oncol.13(1), 157–160 (2002).
  • Johnson GR, Zhuang H, Khan J, Chiang SB, Alavi A. Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma. Clin. Nucl. Med.28(10), 815–820 (2003).
  • Kole AC, Nieweg OE, van Ginkel RJ et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using [18F]fluorodeoxyglucose. Ann. Surg. Oncol.4(1), 57–63 (1997).
  • Park JY, Kim EN, Kim DY et al. Role of PET or PET/CT in the post-therapy surveillance of uterine sarcoma. Gynecol. Oncol.109(2), 255–262 (2008).
  • Kneisl JS, Patt JC, Johnson JC, Zuger JH. Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin. Orthop. Relat. Res.450, 101–104 (2006).
  • Postovsky S, Barzilai M, Meller I, Kollander Y, Futerman B, Ben Arush MW. Does regular follow-up influence the survival of patients with sarcoma after recurrence? The Miri Shitrit pediatric oncology department experience. J. Pediatr. Hematol. Oncol.30(3), 189–195 (2008).
  • Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur. J. Nucl. Med. Mol. Imaging31(2), 189–195 (2004).
  • Lisle JW, Eary JF, O’Sullivan J, Conrad EU. Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin. Orthop. Relat. Res.467(6), 1605–1611 (2009).
  • Hawkins DS, Schuetze SM, Butrynski JE et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J. Clin. Oncol.23(34), 8828–8834 (2005).
  • Hawkins DS, Conrad EU 3rd, Butrynski JE, Schuetze SM, Eary JF. [F-18]-fluorodeoxy-d-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer115(15), 3519–3525 (2009).
  • Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J. Nucl. Med.49(12), 1973–1979 (2008).
  • Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med.50(Suppl. 1), 122S–150S (2009).
  • Van Glabbeke M, Verweij J, Judson I, Nielsen OS. Progression-free rate as the principal end-point for Phase II trials in soft-tissue sarcomas. Eur. J. Cancer38(4), 543–549 (2002).
  • Buck AK, Herrmann K, Buschenfelde CM et al. Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin. Cancer Res.14(10), 2970–2977 (2008).
  • Meyer JS, Nadel HR, Marina N et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr. Blood Cancer51(2), 163–170 (2008).
  • Fahey FH. Dosimetry of pediatric PET/CT. J. Nucl. Med.50(9), 1483–1491 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.