231
Views
11
CrossRef citations to date
0
Altmetric
Special Report

JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia

, &
Pages 37-48 | Published online: 10 Jan 2014

References

  • Miosge LA, Goodnow CC. Genes, pathways and checkpoints in lymphocyte development and homeostasis. Immunol. Cell Biol.83, 318–335 (2005).
  • Tortolani PJ, Lal BK, Riva A et al. Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J. Immunol.155, 5220–5226 (1995).
  • Sharfe N, Dadi HK, O’Shea JJ, Roifman CM. JAK3 activation in human lymphocyte precursor cells. Clin. Exp. Immunol.108, 552–556 (1997).
  • Sudbeck EA, Liu X-P, Narla RK et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res.5, 1569–1582 (1999).
  • Scharfe N, Dadi HK, Roifman CM. JAK3 protein tyrosine kinase mediates interleukin-7 induced activation of phosphatidylinositol-3 kinase. Blood86, 2077–2085 (1995).
  • Malin S, McManus S, Cobaleda C et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat. Immunol.11, 171–179 (2010).
  • Lin Q, Lai R, Chirieac LR et al. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines. Am. J. Pathol.167, 969–980 (2005).
  • Cornejo MG, Boggon TJ, Mercher T. JAK3: a two-faced player in hematologic disorders. Int. J. Biochem. Cell Biol.41, 2376–2379 (2009).
  • Kawahara A, Minami Y, Miyazaki T, Ihle JN, Taniguchi T. Critical role of the interleukin 2 (IL-2) receptor γ-chain associated JAK3 in the IL-2 induced c-fos and c-myc, but not bcl-1 gene induction. Proc. Natl Acad. Sci. USA92, 8724–8728 (1995).
  • Walker SR, Nelson EA, Frank DA. STAT5 represses BCL6 expression by binding to a regulatory region frequently mutated in lymphomas. Oncogene26, 224–233 (2007).
  • Duy C, Yu JJ, Nahar R et al. BCL6 is critical for the development of a diverse B cell repertoire. J. Exp. Med.207, 1209–1221 (2009).
  • Han S-S, Yun H, Son D-J et al. NF-κB/STAT3/PI3K signaling crosstalk in iMycEµ B lymphoma. Mol. Cancer9, 97 (2010).
  • Juarez J, Baraz R, Gaundar S, Bradstock K, Bendall L. Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica92, 450–459 (2007).
  • Juarez J, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ. CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukemia cells to the bone marrow via activation of p38MAPK. Br. J. Haematol.145, 491–499 (2009).
  • Vila-Coro AJ, Rodriguez-Frade JM, DeAna AM, Moreno-Ortiz MC, Martinez C, Mellado M. The chemokine SDF-1 triggers CXCR4 receptor dimerization and activates the JAK–STAT pathway. FASEB J.13, 1699–1710 (1999).
  • Wang L, Fortney JE, Gibson LF. Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt. Leuk. Res.28, 733–742 (2004).
  • Hornakova T, Staerk J, Royer Y et al. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin 9 receptor a homodimers. J. Biol. Chem.284, 6773–6781 (2009).
  • Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J. Biol. Chem.283, 5258–5266 (2008).
  • Malka Y, Hornakova T, Royer Y et al. Ligand-independent homomeric and heteromeric complexes between interleukin-2 or -9 receptor subunits and the γ chain. J. Biol. Chem.283, 33569–33577 (2008).
  • Qazi S, Uckun FM. Gene expression profiles of infant acute lymphoblastic leukaemia and its prognostically distinct subsets. Br. J. Haematol.149(6), 865–873 (2010).
  • Mulligan CG, Zhang J, Harvey RC et al.JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA106, 9414–9418 (2009).
  • Uckun FM, Goodman P, Ma H, Dibirdik I, Qazi S. CD22 exon 12 deletion as a novel pathogenic mechanism of human B-precursor leukemia. Proc. Natl Acad. Sci. USA107, 16852–16857 (2010).
  • Irizarry RA, Hobbs B, Collin F et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4(2), 249–264 (2003).
  • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics19(2), 185–193 (2003).
  • Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.3(1), Article 3 (2004).
  • Wettenhall JM, Simpson KM, Satterley K, Smyth GK. affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics22(7), 897–899 (2006).
  • Takeshita T, Arita T, Higuchi M et al. STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity6, 449–457 (1997).
  • Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T-cells by γ(c) family cytokines. Nat. Rev. Immunol.9, 480–490 (2009).
  • Walters DK, Mercher T, Gu TL et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell10, 65–75 (2006).
  • Sato T, Toki T, Kanezaki R et al. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Br. J. Hematol.141, 681–688 (2008).
  • Malinge S, Ragu C, Della-Valle V et al. Activating mutations in human acute megakaryoblastic leukemia. Blood112, 4220–4226 (2008).
  • Cornejo MG, Kharas MG, Werneck MB et al. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood113, 2746–2754(2009).
  • Yamashita Y, Yuan J, Suetake I et al. Array-based genomic resequencing of human leukemia. Oncogene29, 3723–3731 (2010).
  • Qiu L, Lai R, Lin Q et al. Autocrine release of interleukin-9 promotes JAK3-dependent survival of ALK+ anaplastic large-cell lymphoma cells. Blood108, 2407–2415 (2006).
  • Bard JD, Gelebart P, Anand M et al. IL-21 contributes to JAK3/STAT3 activation and promotes cell growth in ALK-positive anaplastic large cell lymphoma. Am. J. Pathol.175, 825–834 (2009).
  • Amin HM, Medeiros LJ, Ma Y et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene22, 5399–5407 (2003).
  • Steele AJ, Prentice AG, Cwynarski K et al. The JAK3 selective inhibitor PF-956980 reverses resistance to cytotoxic agents induced by interleukin-4 treatment of chronic lymphocytic leukemia cells: potential for reversal of cytoprotection by the microenvironment. Blood DOI: 10.1182/blood-2009-2009-245811 (2010) (Epub ahead of print).
  • Martinez-Lostao L, Briones J, Forne I et al. Role of STAT1 pathway in apoptosis induced by fludarabine and JAK kinase inhibitors in B-cell chronic lymphocytic leukemia. Leukemia46, 435–442 (2005).
  • Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM–ALK in ALK+ anaplastic large-cell lymphoma. Blood108, 2796–2803 (2006).
  • Piessevaux J, Lavens D, Peelman F, Tavernier J. The many faces of the SOCS box. Cytokine Growth Factor Rev.19, 371–381 (2008).
  • Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature387, 921–924 (1997).
  • Jumaa H, Bossaller L, Portugal K et al. Deficiency of the adaptor SLP-65 in pre-B cell acute lymphoblastic leukemia. Nature423, 452–456 (2003).
  • Duy C, Sprangers M, Klemm L et al. Inactivation of pre-B cell receptor-mediated tumor suppression by aberrant splicing in Ph+ acute lymphoblastic leukemia. Blood (ASH Annual Meeting Abstracts)114 (2009) (Abstract 579).
  • Nakayama J, Yamamoto M, Hayashi K et al. BLNK suppresses pre-B cell leukemogenesis through inhibition of JAK3. Blood113, 1483–1492 (2009).
  • Uckun FM, Dibirdik I, Smith R et al. Interleukin 7 receptor ligation stimulates tyrosine phosphorylation, inositol phospholipid turnover, and clonal proliferation of human B-cell precursors. Proc. Natl Acad. Sci. USA88(9), 3589–3593 (1991).
  • Morrissey PJ, Conlon P, Charrier K et al. Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J. Immunol.147, 561–568 (1991).
  • Fisher AG, Burdet C, Bunce C et al. Lymphoproliferative disorders in IL-7 transgenic mice: expansion of immature B-cells which retain macrophage potential. Int. Immunol.7, 415–423 (1995).
  • Mertshing E, Grawunder U, Meyer V et al. Phenotypic and functional analysis of B-lymphopoiesis in interleukin-7 transgenic mice: expansion of pro-B/pre-B cell number and persistence of B lymphocyte development in lymph nodes and spleen. Eur. J. Immunol.26, 28–33 (1996).
  • Rich BE, Campos-Torres J, Tepper RI, Moradith FW, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J. Exp. Med.177, 305–316 (1993).
  • Touw I, Pouweis K, van Agthoven T et al. Interleukin 7 is a growth factor of precursor B and T acute lymphoblastic leukemia. Blood75, 2097–2101 (1990).
  • Henney CS. Interleukin 7: effects on early events in lymphopoiesis. Immunol. Today10, 170–173 (1989).
  • Knoops L, Hornakova T, Royer Y, Constantinescu SN, Renauld JC. JAK kinases overexpression promotes in vitro cell transformation. Oncogene27, 1511–1519 (2008).
  • Bonetta L. Leukemia case triggers tighter gene therapy controls. Nat. Med.8, 1189 (2002).
  • Witthuhn BA, Williams MD, Kerawalla H, Uckun FM. Differential substrate recgnition capabilities of Janus protein tyrosine kinases within the interleukin 2 receptor system: JAK3 as a potential molecular target for treatment of leukemias with a hyperactive JAK–STAT signaling machinery. Leuk. Lymphoma32, 289–297 (1999).
  • Zhu MH, Berry JA, Russell SM, Leonard WJ. Delineation of the regions of interleukin 2 (IL-2) receptor β chain important for association of JAK1 and JAK3. J. Biol. Chem.273, 10719–10725 (1998).
  • Fujii H. Receptor expression is essential for proliferation induced by dimerized JAK kinases. Biochem. Biophys. Res. Commun.370, 557–560 (2008).
  • James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature434, 1144–1148 (2005).
  • Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352, 1779–1790 (2005).
  • Jeong EG, Kim MS, Nam HK et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin. Cancer Res.14, 3716–3722 (2008).
  • Thompson JE, Cubbon RM, Cummings RT et al. Photochemical preparation of a pyridone containing tetracycle: a JAK protein kinase inhibitor. Bioorg. Med. Chem. Lett.12, 1219–1223 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.