53
Views
4
CrossRef citations to date
0
Altmetric
Review

Role of tyrosine kinase inhibitors in the management of high-grade gliomas

, &
Pages 1739-1748 | Published online: 10 Jan 2014

References

  • Ahluwalia MS, Gladson CL. Progress on antiangiogenic therapy for patients with malignant glioma. J. Oncol.2010, 689018 (2010).
  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol.29(6), 15–18 (2002).
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat. Rev. Neurosci.8(8), 610–622 (2007).
  • Batchelor TT, Duda DG, di Tomaso E et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol.28(17), 2817–2823 (2010).
  • Batchelor T, Mulholland P, Neyns. The efficacy of cediranib as monotherapy and in combination with lomustine compared to lomustine alone in patients with recurrent glioblastoma: a Phase III randomized study. Neuro. Oncol.12(Suppl. 4), iv69–iv78 (2010).
  • Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med.356(2), 125–134 (2007).
  • Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. 359(4), 378–390 (2008).
  • Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. N. Pharmacol. Exp. Ther.319(3), 1070–1080 (2006).
  • Yu CR, Friday BB, Lai JP et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol. Cancer Ther.5(9), 2378–2387 (2006).
  • Wen PY, Cloughesy T, Kuhn J et al. Phase I/II study of sorafenib and temsirolimus for patients with recurrent glioblastoma (GBM) (NABTC 05–02). ASCO Meeting Abstracts27(15 Suppl.), 2006 (2009).
  • Prados M, Gilbert M, Kuhn J et al. Phase I/II study of sorefenib and erlotinib for patients with recurrent glioblastoma (GBM) (NABTC 05–02). ASCO Meeting Abstracts27(15S), 2005 (2009).
  • Peereboom D, Ye X, Nabors B et al. NABTT 0502: Phase 2 trial of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Presented at: Society for Neuro-Oncology Meeting. Dallas, TX, USA, 15–17 November 2007.
  • Hainsworth JD, Ervin T, Friedman E et al. Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer116(15), 3663–3669 (2010).
  • Reardon DA, Vredenburgh JJ, Desjardins A et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a Phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J. Neurooncol.101(1), 57–66 (2011).
  • Demetri GD, van Oosterom AT, Garrett CR et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet368(9544), 1329–1338 (2006).
  • Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med.356(2), 115–124 (2007).
  • Zhu AX, Raymond E. Early development of sunitinib in hepatocellular carcinoma. Expert Rev. Anticancer Ther.9(1), 143–150 (2009).
  • Neyns B, Sadones J, Chaskis C et al. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J. Neurooncol.103(3), 491–501 (2011).
  • Reardon DA, Vredenburgh JJ, Coan A et al. Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma. J. Neurooncol. DOI: 10.1007/s11060-011-0627-0 (2011) (Epub ahead of print).
  • Sloan B, Scheinfeld NS. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr. Opin. Investig. Drugs9(12), 1324–1335 (2008).
  • Iwamoto FM, Lamborn KR, Robins HI et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06–02). Neuro Oncol.12(8), 855–861 (2010).
  • Kurzrock R, Camacho L, Hong D et al. A Phase I dose-escalation study of the safety and pharmacokinetics of a XL184, a VEGFR and Met kinase inhibitor, administered orally to subjects with advanced malignancies. EJC Suppl.4(12), 405 (2006).
  • Salgia R, Hong D, Sherman SI et al. A phase 1 dose-escalation study of the safety and pharmacokinetics (PK) of XL184, a VEGFR and MET kinase inhibitor, administered orally to patients (pts) with advanced malignancies. Mol. Cancer Ther.6(12), 3385S–3385S (2007).
  • Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett.225(1), 1–26 (2005).
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol.7(4), 436–451 (2005).
  • Wen PY, Prados M, Schiff D et al. Phase II study of XL184 (BMS 907351), an inhibitor of MET, VEGFR2, and RET, in patients (pts) with progressive glioblastoma (GB). ASCO Meeting Abstracts28(15 Suppl.), 2006 (2010).
  • Sathornsumetee S, Rich JN. Vandetanib, a novel multitargeted kinase inhibitor, in cancer therapy. Drugs Today42(10), 657–670 (2006).
  • Rich JN, Sathornsumetee S, Keir ST et al. ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin. Cancer Res.11(22), 8145–8157 (2005).
  • Yiin JJ, Hu B, Schornack PA et al. ZD6474, a multitargeted inhibitor for receptor tyrosine kinases, suppresses growth of gliomas expressing an epidermal growth factor receptor mutant, EGFRvIII, in the brain. Mol. Cancer Ther.9(4), 929–941 (2010).
  • Damiano V, Melisi D, Bianco C et al. Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin. Cancer Res.11(15), 5639–5644 (2005).
  • Drappatz J, Norden AD, Wong ET et al. Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int. J. Radiat. Oncol. Biol. Phys.78(1), 85–90 (2010).
  • Jost LM, Gschwind HP, Jalava T et al. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab. Dispos.34(11), 1817–1828 (2006).
  • Saunders MP, Wilson R, Peeters M et al. Vandetanib with FOLFIRI in patients with advanced colorectal adenocarcinoma: results from an open-label, multicentre Phase I study. Cancer Chemother. Pharmacol.64(4), 665–672 (2009).
  • Scott EN, Meinhardt G, Jacques C, Laurent D, Thomas AL. Vatalanib: the clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin. Invest. Drugs16(3), 367–379 (2007).
  • Thomas AL, Morgan B, Horsfield MA et al. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J. Clin. Oncol.23(18), 4162–4171 (2005).
  • Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery55(2), 426–432; discussion 432 (2004).
  • Conrad C, Friedman H, Reardon D et al. A Phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). ASCO Meeting Abstracts22(14 Suppl.), 1512 (2004).
  • Reardon D, Friedman H, Yung WKA et al. A Phase I/II trial of PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). ASCO Meeting Abstracts22(14 Suppl.), 1513 (2004).
  • Glen H, Mason S, Patel H, Macleod K, Brunton VG. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumour cell migration and invasion. BMC Cancer11(1), 309 (2011).
  • Hermanson M, Funa K, Hartman M et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res.52(11), 3213–3219 (1992).
  • Brennan C, Momota H, Hambardzumyan D et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One4(11), e7752 (2009).
  • Kilic T, Alberta JA, Zdunek PR et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res.60(18), 5143–5150 (2000).
  • Wen PY, Yung WK, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res.12(16), 4899–4907 (2006).
  • Wen PY, Yung WK, Lamborn KR et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01–08). Neuro Oncol.11(6), 853–860 (2009).
  • Desjardins A, Quinn JA, Vredenburgh JJ et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J. Neuro-Oncol.83(1), 53–60 (2007).
  • Reardon DA, Egorin MJ, Quinn JA et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastorna multiforme. J. Clin. Oncol.23(36), 9359–9368 (2005).
  • Reardon DA, Dresemann G, Taillibert S et al. Multicentre Phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br. J. Cancer101(12), 1995–2004 (2009).
  • Dresemann G, Weller M, Rosenthal MA et al. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J. Neurooncol.96(3), 393–402 (2010).
  • Dong Y, Jia L, Wang X et al. Selective inhibition of PDGFR by imatinib elicits the sustained activation of ERK and downstream receptor signaling in malignant glioma cells. Int J. Oncol.38(2), 555–569 (2011).
  • Stettner MR, Wang W, Nabors LB et al. Lyn kinase activity is the predominant cellular Src kinase activity in glioblastoma tumor cells. Cancer Res.65(13), 5535–5543 (2005).
  • Du J, Bernasconi P, Clauser KR et al. Bead-based profiling of tyrosine kinase phosphorylation identifies Src as a potential target for glioblastoma therapy. Nat. Biotechnol.27(1), 77–83 (2009).
  • Ahluwalia MS, Groot J, Liu WM, Gladson CL. Targeting Src in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett.298(2), 139–149 (2010).
  • Lu-Emerson C, Norden AD, Drappatz J et al. Retrospective study of dasatinib for recurrent glioblastoma after bevacizumab failure. J. Neurooncol.104(1), 287–291 (2010).
  • Puttini M, Coluccia AM, Boschelli F et al.In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res.66(23), 11314–11322 (2006).
  • Kimura S, Naito H, Segawa H et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood106(12), 3948–3954 (2005).
  • Santos FP, Kantarjian H, Cortes J, Quintas-Cardama A. Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr. Opin. Investig. Drugs11(12), 1450–1465 (2011).
  • Chakravarti A, Zhai G, Suzuki Y et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol.22(10), 1926–1933 (2004).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23(4), 357–361 (2005).
  • Galanis E, Buckner JC, Maurer MJ et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol.23(23), 5294–5304 (2005).
  • Prasad G, Sottero T, Yang X et al. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol.13(4), 384–392 (2011).
  • Papadopoulos KP, Tabernero J, Patnaik A et al. A Phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of a novel PI3K inhibitor, XL765, administered orally to patients with advanced solid tumors. J. Clin. Oncol. (Meeting Abstracts)26, 3510 (2008).
  • Bagci-Onder T, Wakimoto H, Anderegg M, Cameron C, Shah K. A dual PI3K/mTOR inhibitor, PI-103, cooperates with stem cell-delivered TRAIL in experimental glioma models. Cancer Res.71(1), 154–163 (2011).
  • Franceschi E, Cavallo G, Lonardi S et al. Gefitinib in patients with progressive high-grade gliomas: a multicentre Phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer96(7), 1047–1051 (2007).
  • Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol.22(1), 133–142 (2004).
  • Raizer JJ, Abrey LE, Lassman AB et al. A Phase I trial of erlotinib in patients with nonprogressive glioblastoma multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. Neuro Oncol.12(1), 87–94 (2010).
  • Raizer JJ, Abrey LE, Lassman AB et al. A Phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol.12(1), 95–103 (2010).
  • Vogelbaum MA, Peereboom D, Stevens G, Barnett GH, Brewer C. Response rate to single agent therapy with the EGFR tyrosine kinase inhibitor erlotinib in recurrent blioblastoma multiforme: results of a Phase II study. Proceedings of: Ninth Meeting of the Society for Neuro-Oncology. Toronto, Canada, 18–21 November 2004 (Abstract TA-359).
  • Sathornsumetee S, Desjardins A, Vredenburgh JJ et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol.12(12), 1300–1310 (2010).
  • Brown PD, Krishnan S, Sarkaria JN et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J. Clin. Oncol.26(34), 5603–5609 (2008).
  • Peereboom DM, Shepard DR, Ahluwalia MS et al. Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J. Neurooncol.98(1), 93–99 (2009).
  • Prados MD, Chang SM, Butowski N et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol.27(4), 579–584 (2009).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353(19), 2012–2024 (2005).
  • Stommel JM, Kimmelman AC, Ying H et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science318(5848), 287–290 (2007).
  • Robins HI, Wen PY, Chang SM et al. Phase I study of erlotinib and CCI-779 (temsirolimus) for patients with recurrent malignant gliomas (MG) (NABTC 04–02). ASCO Meeting Abstracts25(18 Suppl.), 2057 (2007).
  • Haas-Kogan DA, Prados MD, Tihan T et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl Cancer Inst.97(12), 880–887 (2005).
  • Thiessen B, Stewart C, Tsao M et al. A Phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother. Pharmacol.65(2), 353–361 (2010).
  • Mir O, Blanchet B, Goldwasser F. Drug-induced effects on erlotinib metabolism. N. Engl. J. Med.365(4), 379–380 (2011).
  • Muldoon LL, Soussain C, Jahnke K et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J. Clin. Oncol.25(16), 2295–2305 (2007).
  • Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J. Pharmacol. Exp. Ther.336(1), 223–233 (2011).
  • Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J. Pharmacol. Exp. Ther.334(1), 147–155 (2010).
  • Tang SC, Lagas JS, Lankheet NA et al. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int. J. Cancer DOI: 10.1002/ijc.26000 (2011) (Epub ahead of print).
  • Lagas JS, van Waterschoot RA, van Tilburg VA et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin. Cancer Res.15(7), 2344–2351 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.