164
Views
16
CrossRef citations to date
0
Altmetric
Theme: Breast cancer - Review

Implication of miRNA in the diagnosis and treatment of breast cancer

, , , , &
Pages 1265-1275 | Published online: 10 Jan 2014

References

  • Khoshnaw SM, Green AR, Powe DG, Ellis IO. MicroRNA involvement in the pathogenesis and management of breast cancer. J. Clin. Pathol.62(5), 422–428 (2009).
  • Cifuentes D, Xue H, Taylor DW et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science328(5986), 1694–1698 (2010).
  • Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev.24(17), 1951–1960 (2010).
  • Meyers BC, Simon SA, Zhai J. MicroRNA processing: battle of the bulge. Curr. Biol.20(2), R68–R70 (2010).
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science318(5858), 1931–1934 (2007).
  • Eiring AM, Harb JG, Neviani P et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell140(5), 652–665 (2010).
  • Khraiwesh B, Arif MA, Seumel GI et al. Transcriptional control of gene expression by microRNAs. Cell140(1), 111–122 (2010).
  • O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res.12(2), 201 (2010).
  • Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ.17(2), 193–199 (2010).
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120(1), 15–20 (2005).
  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J. Biol. Chem.282(2), 1479–1486 (2007).
  • Barker A, Giles KM, Epis MR, Zhang PM, Kalinowski F, Leedman PJ. Regulation of ErbB receptor signalling in cancer cells by microRNA. Curr. Opin. Pharmacol.10(6), 655–661 (2010).
  • Chen D, Farwell MA, Zhang B. MicroRNA as a new player in the cell cycle. J. Cell. Physiol.225(2), 296–301 (2010).
  • Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature460(7254), 529–533 (2009).
  • Vecchione A, Croce CM. Apoptomirs: small molecules have gained the license to kill. Endocr. Relat. Cancer17(1), F37–F50 (2010).
  • Yu F, Yao H, Zhu P et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131(6), 1109–1123 (2007).
  • Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim. Biophys. Acta.1792(4), 341–352 (2009).
  • Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101(9), 2999–3004 (2004).
  • Lehmann U, Hasemeier B, Christgen M et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J. Pathol.214(1), 17–24 (2008).
  • Saito Y, Liang G, Egger G et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6), 435–443 (2006).
  • Hsu PY, Deatherage DE, Rodriguez BA et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res.69(14), 5936–5945 (2009).
  • Dedes KJ, Natrajan R, Lambros MB et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur. J. Cancer47(1), 138–150 (2011).
  • Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology150(1), 14–23 (2009).
  • Blenkiron C, Goldstein LD, Thorne NP et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome. Biol.8(10), R214 (2007).
  • Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res.37(8), 2584–2595 (2009).
  • Leivonen SK, Makela R, Ostling P et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene28(44), 3926–3936 (2009).
  • Al-Nakhle H, Burns PA, Cummings M et al. Estrogen receptor {β} 1 expression is regulated by miR-92 in breast cancer. Cancer Res.70(11), 4778–4784 (2010).
  • Tessel MA, Krett NL, Rosen ST. Steroid receptor and microRNA regulation in cancer. Curr. Opin. Oncol.22(6), 592–597 (2010).
  • Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer. Cancer Res.68(13), 5004–5008 (2008).
  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol. Endocrinol.21(5), 1132–1147 (2007).
  • Bhat-Nakshatri P, Wang G, Collins NR et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res.37(14), 4850–4861 (2009).
  • Yamagata K, Fujiyama S, Ito S et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol. Cell.36(2), 340–347 (2009).
  • Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle8(6), 843–852 (2009).
  • Gregory PA, Bert AG, Paterson EL et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell. Biol.10(5), 593–601 (2008).
  • Cha ST, Chen PS, Johansson G et al. MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis. Cancer Res.70(7), 2675–2685 (2010).
  • Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell. Res.19(4), 439–448 (2009).
  • Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res.69(19), 7495–7498 (2009).
  • Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem.282(19), 14328–14336 (2007).
  • Huang Q, Gumireddy K, Schrier M et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell. Biol.10(2), 202–210 (2008).
  • Liu CG, Calin GA, Meloon B et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA101(26), 9740–9744 (2004).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol. Biol.687, 113–134 (2011).
  • Li J, Smyth P, Flavin R et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol.7, 36 (2007).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65(16), 7065–7070 (2005).
  • Lowery AJ, Miller N, Devaney A et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res.11(3), R27 (2009).
  • Sempere LF, Christensen M, Silahtaroglu A et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res.67(24), 11612–11620 (2007).
  • Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, Van Laere SJ. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br. J. Cancer103(4), 532–541 (2010).
  • Xiong J, Yu D, Wei N et al. An estrogen receptor α suppressor, microRNA-22, is downregulated in estrogen receptor α-positive human breast cancer cell lines and clinical samples. FEBS J.277(7), 1684–1694 (2010).
  • Lowery AJ, Miller N, Dwyer RM, Kerin MJ. Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer10, 502 (2010).
  • Hui AB, Shi W, Boutros PC et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab. Invest.89(5), 597–606 (2009).
  • Mattie MD, Benz CC, Bowers J et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer5, 24 (2006).
  • Zhao JJ, Lin J, Yang H et al. MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J. Biol. Chem.283(45), 31079–31086 (2008).
  • Zhao Y, Deng C, Wang J et al. Let-7 family miRNAs regulate estrogen receptor α signaling in estrogen receptor positive breast cancer. Breast Cancer Res. Treat.127(1), 69–80 (2011).
  • Janssen EA, Slewa A, Gudlaugsson E et al. Biologic profiling of lymph node negative breast cancers by means of microRNA expression. Mod. Pathol.23(12), 1567–1576 (2010).
  • Yan LX, Huang XF, Shao Q et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA14(11), 2348–2360 (2008).
  • Qian B, Katsaros D, Lu L et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res. Treat.117(1), 131–140 (2009).
  • Huang GL, Zhang XH, Guo GL et al. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol. Rep.21(3), 673–679 (2009).
  • Wright JA, Richer JK, Goodall GJ. microRNAs and EMT in mammary cells and breast cancer. J. Mammary Gland Biol. Neoplasia15(2), 213–223 (2010).
  • Baffa R, Fassan M, Volinia S et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J. Pathol.219(2), 214–221 (2009).
  • Valastyan S, Reinhardt F, Benaich N et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell137(6), 1032–1046 (2009).
  • Song B, Wang C, Liu J et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J. Exp. Clin. Cancer Res.29, 29 (2010).
  • Camps C, Buffa FM, Colella S et al. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res.14(5), 1340–1348 (2008).
  • Mulrane LBD, McGee S, Jirström K et al. MiR-187 is a marker of poor prognosis in estrogen receptor-positive breast cancer. Presented at: 101 AACR 101st Annual Meeting 2010. Washington, DC, USA, 17–21 April 2010.
  • McGee SML, Brennan D, McDonnell S, Jirstrom K, O’Connor D, Gallagher W. miR-224 is marker of poor prognosis in breast cancer. Presented at: AACR 101st Annual Meeting 2010. Washington, DC, USA, 17–21 April 2010.
  • Tavazoie SF, Alarcon C, Oskarsson T et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature451(7175), 147–152 (2008).
  • Martello G, Rosato A, Ferrari F et al. A MicroRNA targeting dicer for metastasis control. Cell141(7), 1195–1207 (2010).
  • Foekens JA, Sieuwerts AM, Smid M et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc. Natl Acad. Sci. USA105(35), 13021–13026 (2008).
  • Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene. Ther.17(8), 523–531 (2010).
  • Iorio MV, Casalini P, Piovan C et al. MicroRNA-205 regulates HER3 in human breast cancer. Cancer Res.69(6), 2195–2200 (2009).
  • Rodriguez-Gonzalez FG, Sieuwerts AM, Smid M et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res. Treat.127(1), 43–51 (2011).
  • Rehman SH, Yu D. MiR-21 upregulation in breast cancer cells leads to PTEN loss and Herceptin resistance. Presented at: AACR 101st Annual Meeting 2010. Washington, DC, USA, 17–21 April 2010.
  • Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem.57(1), 84–91 (2011).
  • Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg.251(3), 499–505 (2010).
  • Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One5(10), e13735 (2010).
  • Criscitiello C, Sotiriou C, Ignatiadis M. Circulating tumor cells and emerging blood biomarkers in breast cancer. Curr. Opin. Oncol.22(6), 552–558 (2010).
  • Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin. Biol. Ther.8(1), 59–81 (2008).
  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.18(3), 350–359 (2008).
  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem.283(2), 1026–1033 (2008).
  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene26(19), 2799–2803 (2007).
  • Blower PE, Chung JH, Verducci JS et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol. Cancer Ther.7(1), 1–9 (2008).
  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene27(42), 5643–5647 (2008).
  • Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res.69(4), 1279–1283 (2009).
  • Liang Z, Wu H, Reddy S et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem. Biophys. Res. Comm.363(3), 542–546 (2007).
  • Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res.2(2), 170–180 (2010).
  • Liang Z, Wu H, Xia J et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol.79(6), 817–824 (2010).
  • Grimm D, Streetz KL, Jopling CL et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature441(7092), 537–541 (2006).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Ma L, Reinhardt F, Pan E et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol.28(4), 341–347 (2010).
  • Elmen J, Lindow M, Schutz S et al. LNA-mediated microRNA silencing in non-human primates. Nature452(7189), 896–899 (2008).
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327(5962), 198–201 (2010).
  • Kota J, Chivukula RR, O’Donnell KA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell137(6), 1005–1017 (2009).
  • Wiggins JF, Ruffino L, Kelnar K et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res.70(14), 5923–5930 (2010).
  • Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther.18(9), 1650–1656 (2010).
  • Davis ME, Zuckerman JE, Choi CH et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464(7291), 1067–1070 (2010).
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N. Engl J. Med.360(8), 790–800 (2009).
  • Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol.26(21), 8191–8201 (2006).
  • Yu Z, Wang C, Wang M et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell. Biol.182(3), 509–517 (2008).
  • Li H, Bian C, Liao L, Li J, Zhao RC. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res. Treat.126(3), 565–575 (2010).
  • Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res.2(2), 170–180 (2010).
  • Sun F, Fu H, Liu Q et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett.582(10), 1564–1568 (2008).
  • Qi L, Bart J, Tan LP et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer9, 163 (2009).
  • Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.67, 11001–11011 (2007).
  • Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem.284(35), 23204–23216 (2009).
  • Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res.71(3), 645–654 (2011).
  • Kong W, Yang H, He L et al. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting ρA. Mol. Cell. Biol.28(22), 6773–6784 (2008).
  • Kong W, He L, Coppola M et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem.285(23), 17869–17879 (2010).
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature449(7163), 682–688 (2007).
  • Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis29(10), 1963–1966 (2008).
  • Sharon F, McGee LM, Brennan DJ et al. miR-224 is marker of poor prognosis in breast cancer. Presented at: AACR 101st Annual Meeting 2010. Washington, DC, USA, 17–21 April 2010.
  • Gee HE, Camps C, Buffa FM et al. MicroRNA-10b and breast cancer metastasis. Nature455(7216), E8–E9; author reply E9 (2008).
  • Yu F, Yao H, Zhu P et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131(6), 1109–1123 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.