388
Views
59
CrossRef citations to date
0
Altmetric
Theme: Sarcoma - Review

The Wnt signaling pathway: implications for therapy in osteosarcoma

, , , , &
Pages 1223-1232 | Published online: 10 Jan 2014

References

  • Hayden JB, Hoang BH. Osteosarcoma: basic science and clinical implications. Orthop. Clin. North. Am.37(1), 1–7 (2006).
  • Link MP, Goorin AM, Miser AW et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med.314(25), 1600–1606 (1986).
  • Cleton-Jansen A-M, Anninga JK, Briaire-De Bruijn IH et al. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br. J. Cancer101(11), 1909–1918 (2009).
  • Moon RT. Wnt/β-catenin pathway. Sci. STKE2005(271), (2005).
  • Paul S, Dey A. Wnt signaling and cancer development: therapeutic implication. Neoplasma55(3), 165–176 (2008).
  • Luo J, Chen J, Deng Z-L et al. Wnt signaling and human diseases: what are the therapeutic implications? Lab. Invest87(2), 97–103 (2007).
  • Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug. Discov.5(12), 997–1014 (2006).
  • Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107(4), 513–523 (2001).
  • Kato M, Patel MS, Levasseur R et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol.157(2), 303–314 (2002).
  • Babij P, Zhao W, Small C et al. High bone mass in mice expressing a mutant LRP5 gene. J. Bone Miner Res.18(6), 960–974 (2003).
  • Johnson ML, Kamel MA. The Wnt signaling pathway and bone metabolism. Curr. Opin. Rheumatol.19(4), 376–382 (2007).
  • Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J. Clin. Invest.116(5), 1202–1209 (2006).
  • Haydon RC, Deyrup A, Ishikawa A et al. Cytoplasmic and/or nuclear accumulation of the β-catenin protein is a frequent event in human osteosarcoma. Int. J. Cancer102(4), 338–342 (2002).
  • Enomoto M, Hayakawa S, Itsukushima S et al. Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene28(36), 3197–3208 (2009).
  • Hoang BH, Kubo T, Healey JH et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int. J. Cancer109(1), 106–111 (2004).
  • Mandal D, Srivastava A, Mahlum E et al. Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene386(1–2), 131–138 (2007).
  • Kansara M, Tsang M, Kodjabachian L et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J. Clin. Invest.119(4), 837–851 (2009).
  • Cai Y, Mohseny AB, Karperien M, Hogendoorn PC, Zhou G, Cleton-Jansen AM. Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma. J. Pathol.220(1), 24–33 (2010).
  • Matushansky I, Hernando E, Socci ND et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J. Clin. Invest.117(11), 3248–3257 (2007).
  • Lin YC, You L, Xu Z et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem. Biophys. Res. Commun.341(2), 635–640 (2006).
  • Mazieres J, He B, You L et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res.64(14), 4717–4720 (2004).
  • Batra S, Shi Y, Kuchenbecker KM et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem. Biophys. Res. Commun.342(4), 1228–1232 (2006).
  • Ai L, Tao Q, Zhong S et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis27(7), 1341–1348 (2006).
  • Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci.97(1), 64–71 (2006).
  • Rubin EM, Guo Y, Tu K, Xie J, Zi X, Hoang BH. Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol. Cancer Ther.9(3), 731–741 (2010).
  • Guo Y, Xie J, Rubin E et al. Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res.68(9), 3350–3360 (2008).
  • DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B. The soluble Wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res.67(11), 5371–5379 (2007).
  • Monaghan H, Bubb VJ, Sirimujalin R, Millward-Sadler SJ, Salter DM. Adenomatous polyposis coli (APC), β-catenin, and cadherin are expressed in human bone and cartilage. Histopathology39(6), 611–619 (2001).
  • Hoang BH, Kubo T, Healey JH et al. Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-β-catenin pathway. Cancer Res.64(8), 2734–2739 (2004).
  • Fedi P, Bafico A, Nieto Soria A et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J. Biol. Chem.274(27), 19465–19472 (1999).
  • Guo Y, Zi X, Koontz Z et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J. Orthop. Res.25(7), 964–971 (2007).
  • Guo Y, Rubin EM, Xie J, Zi X, Hoang BH. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin. Orthop. Relat. Res.466(9), 2039–2045 (2008).
  • van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development (Cambridge, England)136(19), 3205–3214 (2009).
  • Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits β-catenin–TCF signaling depending on receptor context. PLoS Biol.4(4), e115 (2006).
  • Oishi I, Suzuki H, Onishi N et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells8(7), 645–654 (2003).
  • Morioka K, Tanikawa C, Ochi K et al. Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci.100(7), 1227–1233 (2009).
  • Nagayama S, Katagiri T, Tsunoda T et al. Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res.62(20), 5859–5866 (2002).
  • Nagayama S, Fukukawa C, Katagiri T et al. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene24(41), 6201–6212 (2005).
  • Fukukawa C, Nagayama S, Tsunoda T, Toguchida J, Nakamura Y, Katagiri T. Activation of the non-canonical Dvl-Rac1-JNK pathway by Frizzled homologue 10 in human synovial sarcoma. Oncogene28(8), 1110–1120 (2009).
  • Coltella N, Manara MC, Cerisano V et al. Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma. FASEB J.17(9), 1162–1164 (2003).
  • Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res.62(18), 5126–5128 (2002).
  • Patanè S, Avnet S, Coltella N et al. MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res.66(9), 4750–4757 (2006).
  • Yeon CH, Pegram MD. Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer. Invest. New Drugs23(5), 391–409 (2005).
  • de Gramont A, Van Cutsem E. Investigating the potential of bevacizumab in other indications: metastatic renal cell, non-small cell lung, pancreatic and breast cancer. Oncology69(Suppl. 3), 46–56 (2005).
  • Albanell J, Gascon P. Small molecules with EGFR-TK inhibitor activity. Curr. Drug Targets6(3), 259–274 (2005).
  • Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur. J. Cancer46(7), 1260–1270 (2010).
  • Liao AT, McCleese J, Kamerling S, Christensen J, London CA. A novel small molecule Met inhibitor, PF2362376, exhibits biological activity against osteosarcoma. Vet. Comp. Oncol.5(3), 177–196 (2007).
  • McCleese JK, Bear MD, Fossey SL et al. The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int. J. Cancer125(12), 2792–2801 (2009).
  • Regenbrecht CR, Lehrach H, Adjaye J. Stemming cancer: functional genomics of cancer stem cells in solid tumors. Stem. Cell Rev.4(4), 319–328 (2008).
  • Gibbs CP, Kukekov VG, Reith JD et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia7(11), 967–976 (2005).
  • Wang L, Park P, Zhang H, La Marca F, Lin C-Y. Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int. J. Cancer128(2), 294–303 (2010).
  • Tirino V, Desiderio V, d’Aquino R et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One3(10), e3469 (2008).
  • Levings PP, McGarry SV, Currie TP et al. Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res.69(14), 5648–5655 (2009).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445(7123), 111–115 (2007).
  • Honoki K, Fujii H, Kubo A et al. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol. Rep.24(2), 501–505 (2010).
  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10(1), 55–63 (2004).
  • Dravid G, Ye Z, Hammond H et al. Defining the role of Wnt/β-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells23(10), 1489–1501 (2005).
  • Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res.16(12), 3153–3162 (2010).
  • Kaur J, Sanyal SN. PI3-kinase/Wnt association mediates COX-2/PGE(2) pathway to inhibit apoptosis in early stages of colon carcinogenesis: chemoprevention by diclofenac. Tumour Biol.31(6), 623–631 (2010).
  • Baron JA, Cole BF, Sandler RS et al. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med.348(10), 891–899 (2003).
  • Chan TA. Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol.3(3), 166–174 (2002).
  • Sandler RS, Halabi S, Baron JA et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med.348(10), 883–890 (2003).
  • Xia JJ, Pei LB, Zhuang JP et al. Celecoxib inhibits β-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J. Int. Med. Res.38(4), 1294–1304 (2010).
  • Cui C, Zhang Y, Wang L, Liu H, Cui G. Enhanced anticancer activity of glutamate prodrugs of all-trans retinoic acid. J. Pharm. Pharmacol61(10), 1353–1358 (2009).
  • Shah S, Hecht A, Pestell R, Byers SW. Trans-repression of β-catenin activity by nuclear receptors. J. Biol. Chem.278(48), 48137–48145 (2003).
  • Park CH, Chang JY, Hahm ER, Park S, Kim H-K, Yang CH. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun.328(1), 227–234 (2005).
  • Kim J, Zhang X, Rieger-Christ KM et al. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J. Biol. Chem.281(16), 10865–10875 (2006).
  • Jaiswal AS, Marlow BP, Gupta N, Narayan S. β-catenin-mediated transactivation and cell–cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene21(55), 8414–8427 (2002).
  • Roccaro AM, Leleu X, Sacco A et al. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenström’s macroglobulinemia. Clin. Cancer Res.14(6), 1849–1858 (2008).
  • Kakarala M, Brenner DE, Korkaya H et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res. Treat122(3), 777–785 (2010).
  • Lepourcelet M, Chen Y-NP, France DS et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell5(1), 91–102 (2004).
  • Trosset J-Y, Dalvit C, Knapp S et al. Inhibition of protein–protein interactions: the discovery of druglike β-catenin inhibitors by combining virtual and biophysical screening. Proteins64(1), 60–67 (2006).
  • Chen Z, Venkatesan AM, Dehnhardt CM et al. 2,4-diamino-quinazolines as inhibitors of β-catenin/Tcf-4 pathway: potential treatment for colorectal cancer. Bioorg Med. Chem. Lett.19(17), 4980–4983 (2009).
  • Grandy D, Shan J, Zhang X et al. Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J. Biol. Chem.284(24), 16256–16263 (2009).
  • Shan J, Shi D-L, Wang J, Zheng J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry44(47), 15495–15503 (2005).
  • Fujii N, You L, Xu Z et al. An antagonist of dishevelled protein–protein interaction suppresses β-catenin-dependent tumor cell growth. Cancer Res.67(2), 573–579 (2007).
  • Emami KH, Nguyen C, Ma H et al. A small molecule inhibitor of β-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA101(34), 12682–12687 (2004).
  • He B, You L, Uematsu K et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia6(1), 7–14 (2004).
  • Brown AM. Canonical Wnt signaling: high-throughput RNAi widens the path. Genome Biol.6(9), 231 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.