406
Views
44
CrossRef citations to date
0
Altmetric
Theme: Breast Cancer - Review

Targeting RANKL in breast cancer: bone metastasis and beyond

&
Pages 195-201 | Published online: 10 Jan 2014

References

  • Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br. J. Cancer 55(1), 61–66 (1987).
  • Chappard D, Bouvard B, Baslé MF, Legrand E, Audran M. Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review. Morphologie 95(309), 65–75 (2011).
  • Roodman GD. Biology of osteoclast activation in cancer. J. Clin. Oncol. 19(15), 3562–3571 (2001).
  • Dougall WC. RANKL signaling in bone physiology and cancer. Curr. Opin. Support Palliat. Care 1(4), 317–322 (2007).
  • Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. J. Clin. Pathol. 61(5), 577–587 (2008).
  • Roodman GD. Cell biology of the osteoclast. Exp. Hematol. 27(8), 1229–1241 (1999).
  • Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin. Cancer Res. 18(2), 326–335 (2012).
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 423(6937), 337–342 (2003).
  • Santini D, Perrone G, Roato I et al. Expression pattern of receptor activator of NFkB (RANK) in a series of primary solid tumors and related bone metastases. J. Cell. Physiol. 226(3), 780–784 (2011).
  • Azim HA, Kamal NS, Azim HA Jr. Bone metastasis in breast cancer: the story of RANK ligand. J. Egypt. Natl Canc. Inst. 24(3), 107–114 (2012).
  • Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nat. Rev. Endocrinol. 7(4), 208–218 (2011).
  • Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2(8), 584–593 (2002).
  • Yin JJ, Selander K, Chirgwin JM et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103(2), 197–206 (1999).
  • Guise TA, Mundy GR. Cancer and bone. Endocr. Rev. 19(1), 18–54 (1998).
  • Mihai R. The calcium sensing receptor: from understanding parathyroid calcium homeostasis to bone metastases. Ann. R. Coll. Surg. Engl. 90(4), 271–277 (2008).
  • Mihai R, Stevens J, McKinney C, Ibrahim NB. Expression of the calcium receptor in human breast cancer – a potential new marker predicting the risk of bone metastases. Eur. J. Surg. Oncol. 32(5), 511–515 (2006).
  • Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J. Clin. Oncol. 28(33), 4985–4995 (2010).
  • Samani AA, Yakar S, Leroith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28(1), 20–47 (2007).
  • Hiraga T, Myoui A, Hashimoto N et al. Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Res. 72(16), 4238–4249 (2012).
  • Body JJ, Greipp P, Coleman RE et al. A Phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97(Suppl. 3), 887–892 (2003).
  • Sheridan JP, Marsters SA, Pitti RM et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327), 818–821 (1997).
  • Neville-Webbe HL, Cross NA, Eaton CL et al. Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res. Treat. 86(3), 269–279 (2004).
  • Abrahamsen B, Teng AY. Technology evaluation: denosumab, Amgen. Curr. Opin. Mol. Ther. 7(6), 604–610 (2005).
  • Stopeck AT, Lipton A, Body JJ et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J. Clin. Oncol. 28(35), 5132–5139 (2010).
  • Buijs JT, Que I, Lowik CW, Papapoulos SE, Van Der Pluijm G. Inhibition of bone resorption and growth of breast cancer in the bone microenvironment. Bone 44(2), 380–386 (2009).
  • Morony S, Warmington K, Adamu S et al. The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146(8), 3235–3243 (2005).
  • Jones DH, Nakashima T, Sanchez OH et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084), 692–696 (2006).
  • Jacob A, Branstetter D, Rohrbach K et al. RANK and RANK Ligand (RANKL) expression in invasive breast carcinoma and human breast cancer cell lines. Cancer Res. 71(24 Suppl.), 339s (2011).
  • Shin M, Matsuo K, Tada T et al. The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells. Carcinogenesis 32(11), 1634–1640 (2011).
  • Santini D, Schiavon G, Vincenzi B et al. Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS ONE 6(4), e19234 (2011).
  • Tometsko M, Jones J, Miller R, Roudier M, Dougall W, Chaisson-Blake M. Efficacy of a RANKL inhibitor, OPG-Fc, relative to zoledronic acid to inhibit bone metastasis of a RANK-expressing human breast cancer cell line. Bone 2, S255–S330 (2010).
  • Clarke BL, Khosla S. Physiology of bone loss. Radiol. Clin. North Am. 48(3), 483–495 (2010).
  • Weitzmann MN, Pacifici R. Estrogen regulation of immune cell bone interactions. Ann. NY Acad. Sci. 1068, 256–274 (2006).
  • Cenci S, Toraldo G, Weitzmann MN et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc. Natl Acad. Sci. USA 100(18), 10405–10410 (2003).
  • Gao Y, Qian WP, Dark K et al. Estrogen prevents bone loss through transforming growth factor β signaling in T cells. Proc. Natl Acad. Sci. USA 101(47), 16618–16623 (2004).
  • Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111(8), 1221–1230 (2003).
  • Nakashima T, Takayanagi H. New regulation mechanisms of osteoclast differentiation. Ann. N. Y. Acad. Sci. 1240, E13–E18 (2011).
  • Leibbrandt A, Penninger JM. Novel functions of RANK(L) signaling in the immune system. Adv. Exp. Med. Biol. 658, 77–94 (2010).
  • Cummings SR, San Martin J, McClung MR et al.; FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361(8), 756–765 (2009).
  • Ellis GK, Bone HG, Chlebowski R et al. Effect of denosumab on bone mineral density in women receiving adjuvant aromatase inhibitors for non-metastatic breast cancer: subgroup analyses of a Phase 3 study. Breast Cancer Res. Treat. 118(1), 81–87 (2009).
  • Fernandez-Valdivia R, Mukherjee A, Ying Y et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev. Biol. 328(1), 127–139 (2009).
  • Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol. Cell. Biol. 27(4), 1442–1454 (2007).
  • Cao Y, Bonizzi G, Seagroves TN et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107(6), 763–775 (2001).
  • Gonzalez-Suarez E, Jacob AP, Jones J et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468(7320), 103–107 (2010).
  • Schramek D, Leibbrandt A, Sigl V et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468(7320), 98–102 (2010).
  • Crandall CJ, Aragaki AK, Cauley JA et al. Breast tenderness after initiation of conjugated equine estrogens and mammographic density change. Breast Cancer Res. Treat. 131(3), 969–979 (2012).
  • Shapiro S, Farmer RD, Stevenson JC, Burger HG, Mueck AO. Does hormone replacement therapy cause breast cancer? An application of causal principles to three studies. Part 4: the Million Women Study. J. Fam. Plann. Reprod. Health Care 38(2), 102–109 (2012).
  • Joshi PA, Jackson HW, Beristain AG et al. Progesterone induces adult mammary stem cell expansion. Nature 465(7299), 803–807 (2010).
  • Anderson E, Clarke RB. Steroid receptors and cell cycle in normal mammary epithelium. J. Mammary Gland Biol. Neoplasia 9(1), 3–13 (2004).
  • Asselin-Labat ML, Shackleton M, Stingl J et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst. 98(14), 1011–1014 (2006).
  • Asselin-Labat ML, Vaillant F, Sheridan JM et al. Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299), 798–802 (2010).
  • Yan M, Jene N, Byrne D et al. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res. 13(2), R47 (2011).
  • Nakamura R, Sakakibara M, Nagashima T et al. Accumulation of regulatory T cells in sentinel lymph nodes is a prognostic predictor in patients with node-negative breast cancer. Eur. J. Cancer 45(12), 2123–2131 (2009).
  • Tang G, Shak S, Paik S et al. Comparison of the prognostic and predictive utilities of the 21-gene Recurrence Score assay and Adjuvant! for women with node-negative, ER-positive breast cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res. Treat. 127(1), 133–142 (2011).
  • Azim HA Jr, Michiels S, Bedard PL et al. Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin. Cancer Res. 18(5), 1341–1351 (2012).
  • Cancello G, Maisonneuve P, Rotmensz N et al. Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (<35 years) with operable breast cancer. Ann. Oncol. 21(10), 1974–1981 (2010).
  • El Saghir NS, Seoud M, Khalil MK et al. Effects of young age at presentation on survival in breast cancer. BMC Cancer 6, 194 (2006).
  • Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS ONE 4(11), e7695 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.