259
Views
80
CrossRef citations to date
0
Altmetric
Review

Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms

Pages 359-372 | Published online: 10 Jan 2014

References

  • Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet365(9467), 1333–1346 (2005).
  • American Diabetes Association. Standards of medical care in diabetes – 2009. Diabetes Care32(Suppl. 1), S13–S61 (2009).
  • No authors listed. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) group. Lancet352(9131), 837–853 (1998).
  • No authors listed. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) group. Lancet352(9131), 854–865 (1998).
  • Ohkubo Y, Kishikawa H, Araki E et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract.28(2), 103–117 (1995).
  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type 2 diabetes. N. Engl. J. Med.359(15), 1577–1589 (2008).
  • Gerstein HC, Miller ME, Byington RP et al. Effects of intensive glucose lowering in Type 2 diabetes. N. Engl. J. Med.358(24), 2545–2559 (2008).
  • Patel A, MacMahon S, Chalmers J et al. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med.358(24), 2560–2572 (2008).
  • Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in veterans with Type 2 diabetes. N. Engl. J. Med.360(2), 129–139 (2009).
  • Kelly TN, Bazzano LA, Fonseca VA, Thethi TK, Reynolds K, He J. Systematic review: glucose control and cardiovascular disease in Type 2 diabetes. Ann. Intern. Med.151(6), 394–403 (2009).
  • Ray KK, Seshasai SR, Wijesuriya S et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet373(9677), 1765–1772 (2009).
  • Nathan DM, Buse JB, Davidson MB et al. Medical management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of DiabetesDiabetes Care32(1), 193–203 (2009).
  • Roden DM, Altman RB, Benowitz NL et al. Pharmacogenomics: challenges and opportunities. Ann. Intern. Med.145(10), 749–757 (2006).
  • Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet.44(12), 1209–1225 (2005).
  • Pacanowski MA, Hopley CW, Aquilante CL. Interindividual variability in oral antidiabetic drug disposition and response: the role of drug transporter polymorphisms. Expert Opin. Drug Metab. Toxicol.4(5), 529–544 (2008).
  • Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab.4(4), 200–213 (2008).
  • Gloyn AL, Ellard S. Defining the genetic aetiology of monogenic diabetes can improve treatment. Expert Opin. Pharmacother.7(13), 1759–1767 (2006).
  • Reis AF, Velho G. Sulfonylurea receptor-1 (SUR1): genetic and metabolic evidences for a role in the susceptibility to Type 2 diabetes mellitus. Diabetes Metab.28(1), 14–19 (2002).
  • Marchetti P, Navalesi R. Pharmacokinetic–pharmacodynamic relationships of oral hypoglycaemic agents. An update. Clin. Pharmacokinet.16(2), 100–128 (1989).
  • Efanova IB, Zaitsev SV, Zhivotovsky B et al. Glucose and tolbutamide induce apoptosis in pancreatic β-cells. A process dependent on intracellular Ca2+ concentration. J. Biol. Chem.273(50), 33501–33507 (1998).
  • Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab.90(1), 501–506 (2005).
  • Del Guerra S, Marselli L, Lupi R et al. Effects of prolonged in vitro exposure to sulphonylureas on the function and survival of human islets. J. Diabetes Complicat.19(1), 60–64 (2005).
  • Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for Type 2 diabetes mellitus. Metabolism55(5 Suppl. 1), S20–S27 (2006).
  • Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in Type 2 diabetes mellitus. Drugs65(3), 385–411 (2005).
  • Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes19(Suppl.), 789–830 (1970).
  • Thisted H, Johnsen SP, Rungby J. Sulfonylureas and the risk of myocardial infarction. Metabolism55(5 Suppl. 1), S16–S19 (2006).
  • Kar P, Holt RI. The effect of sulphonylureas on the microvascular and macrovascular complications of diabetes. Cardiovasc. Drugs Ther.22(3), 207–213 (2008).
  • Stevens RJ, Coleman RL, Adler AI, Stratton IM, Matthews DR, Holman RR. Risk factors for myocardial infarction case fatality and stroke case fatality in Type 2 diabetes: UKPDS 66. Diabetes Care27(1), 201–207 (2004).
  • DeFronzo RA. Pharmacologic therapy for Type 2 diabetes mellitus. Ann. Intern. Med.131(4), 281–303 (1999).
  • Kahn SE, Haffner SM, Heise MA et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med.355(23), 2427–2443 (2006).
  • Kirchheiner J, Bauer S, Meineke I et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics12(2), 101–109 (2002).
  • Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin. Pharmacol. Ther.71(4), 286–296 (2002).
  • Becker ML, Visser LE, Trienekens PH, Hofman A, van Schaik RH, Stricker BH. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in Type II diabetes mellitus. Clin. Pharmacol. Ther.83(2), 288–292 (2008).
  • Zhou K, Donnelly L, Burch L et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in Type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther.87(1), 52–56 (2009).
  • Holstein A, Plaschke A, Ptak M et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br. J. Clin. Pharmacol.60(1), 103–106 (2005).
  • Flanagan SE, Clauin S, Bellanne-Chantelot C et al. Update of mutations in the genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum. Mutat.30(2), 170–180 (2009).
  • Sattiraju S, Reyes S, Kane GC, Terzic A. KATP channel pharmacogenomics: from bench to bedside. Clin. Pharmacol. Ther.83(2), 354–357 (2008).
  • Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care31(2), 204–209 (2008).
  • Pearson ER, Flechtner I, Njolstad PR et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med.355(5), 467–477 (2006).
  • Hansen T, Echwald SM, Hansen L et al. Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. Diabetes47(4), 598–605 (1998).
  • Meirhaeghe A, Helbecque N, Cottel D et al. Impact of sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: a population study. Am. J. Med. Genet.101(1), 4–8 (2001).
  • Zychma MJ, Gumprecht J, Strojek K et al. Sulfonylurea receptor gene 16–13 polymorphism – association with sulfonylurea or insulin treatment in Type 2 diabetic subjects. Med. Sci. Monit.8(7), CR512–CR515 (2002).
  • Florez JC, Jablonski KA, Kahn SE et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes56(2), 531–536 (2007).
  • Zhang H, Liu X, Kuang H, Yi R, Xing H. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in Type 2 diabetes. Diabetes Res. Clin. Pract.77(1), 58–61 (2007).
  • Feng Y, Mao G, Ren X et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese Type 2 diabetic patients. Diabetes Care31(10), 1939–1944 (2008).
  • Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC. Association studies of variants in promoter and coding regions of β-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet. Med.18(3), 206–212 (2001).
  • Florez JC, Burtt N, de Bakker PI et al. Haplotype structure and genotype–phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes53(5), 1360–1368 (2004).
  • Nielsen EM, Hansen L, Carstensen B et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of Type 2 diabetes. Diabetes52(2), 573–577 (2003).
  • Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 polymorphism predisposes to Type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes51(3), 875–879 (2002).
  • Inoue H, Ferrer J, Warren-Perry M et al. Sequence variants in the pancreatic islet β-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes46(3), 502–507 (1997).
  • Barroso I, Luan J, Middelberg RP et al. Candidate gene association study in Type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol.1(1), E20 (2003).
  • Sesti G, Laratta E, Cardellini M et al. The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5´-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with Type 2 diabetes. J. Clin. Endocrinol. Metab.91(6), 2334–2339 (2006).
  • Holstein A, Hahn M, Stumvoll M, Kovacs P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with Type 2 diabetes. Horm. Metab. Res.41(5), 387–390 (2009).
  • Hamming KS, Soliman D, Matemisz LC et al. Coexpression of the Type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes58(10), 2419–2424 (2009).
  • Grant RW, Moore AF, Florez JC. Genetic architecture of Type 2 diabetes: recent progress and clinical implications. Diabetes Care32(6), 1107–1114 (2009).
  • Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia51(10), 1771–1780 (2008).
  • Grant SF, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet.38(3), 320–323 (2006).
  • Tong Y, Lin Y, Zhang Y, Yang J, Liu H, Zhang B. Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med. Genet.10, 15 (2009).
  • Pearson ER. Translating TCF7L2: from gene to function. Diabetologia52(7), 1227–1230 (2009).
  • Lyssenko V, Lupi R, Marchetti P et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of Type 2 diabetes. J. Clin. Invest.117(8), 2155–2163 (2007).
  • Hattersley AT, Pearson ER. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, β-cell physiology, and genetics in diabetes. Endocrinology147(6), 2657–2663 (2006).
  • Pearson ER, Donnelly LA, Kimber C et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes56(8), 2178–2182 (2007).
  • Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP. Gly972Arg variant in the insulin receptor substrate-1 gene and association with Type 2 diabetes: a meta-analysis of 27 studies. Diabetologia46(7), 990–995 (2003).
  • Zeggini E, Parkinson J, Halford S et al. Association studies of insulin receptor substrate 1 gene (IRS1) variants in Type 2 diabetes samples enriched for family history and early age of onset. Diabetes53(12), 3319–3322 (2004).
  • Florez JC, Sjogren M, Burtt N et al. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with Type 2 diabetes. Diabetes53(12), 3313–3318 (2004).
  • Porzio O, Federici M, Hribal ML et al. The Gly972-->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic β cells. J. Clin. Invest.104(3), 357–364 (1999).
  • Marchetti P, Lupi R, Federici M et al. Insulin secretory function is impaired in isolated human islets carrying the Gly(972)-->Arg IRS-1 polymorphism. Diabetes51(5), 1419–1424 (2002).
  • Sesti G, Marini MA, Cardellini M et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with Type 2 diabetes. Diabetes Care27(6), 1394–1398 (2004).
  • Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol. Ther.108(3), 225–256 (2005).
  • Massion PB, Pelat M, Belge C, Balligand JL. Regulation of the mammalian heart function by nitric oxide. Comp. Biochem. Physiol. A Mol. Integr. Physiol.142(2), 144–150 (2005).
  • Lajoix AD, Reggio H, Chardes T et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic β-cells controls insulin secretion. Diabetes50(6), 1311–1323 (2001).
  • Gunawardana SC, Rocheleau JV, Head WS, Piston DW. Mechanisms of time-dependent potentiation of insulin release: involvement of nitric oxide synthase. Diabetes55(4), 1029–1033 (2006).
  • Becker ML, Aarnoudse AJ, Newton-Cheh C et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet. Genomics18(7), 591–597 (2008).
  • Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet362(9392), 1275–1281 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.