307
Views
32
CrossRef citations to date
0
Altmetric
Review

Atherosclerosis, diabetes and lipoproteins

Pages 1015-1029 | Published online: 10 Jan 2014

References

  • No authors listed. Heart disease: breaking down barriers. Lancet374, 501 (2009).
  • Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors and premature death. N. Engl. J. Med.362, 485–493 (2010).
  • No authors listed. Type 2 diabetes epidemic: a global education. Lancet374, 1654 (2009).
  • Rockenfeller P, Madeo F. Ageing and eating. Biochim. Biophys. Acta1803(4), 499–506 (2010).
  • Evans A. Dr Black’s favourite disease. Br. Heart J.74, 696–697 (1995).
  • Ross R. Atherosclerosis is an inflammatory disease. Am. Heart J.138, S419–S420 (1999).
  • Sattar N, Gaw A, Scherbakova O et al. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation108, 414–419 (2003).
  • Buckley DI, Fu R, Freeman M, Rogers K, Helfand M. C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U.S. Preventive Services Task Force. Ann. Intern. Med.151, 483–495 (2009).
  • Kaptoge S, Di Angelantonio E, Lowe G et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet375, 132–140 (2010).
  • Sam S, Haffner S, Davidson MH et al. Relation of abdominal fat depots to systemic markers of inflammation in Type 2 diabetes. Diabetes Care32, 932–937 (2009).
  • Calabró P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation108, 1930–1932 (2003).
  • Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol.158, 1039–1051 (2001).
  • Dong Q, Wright JR. Expression of C-reactive protein by alveolar macrophages. J. Immunol.156, 4815–4820 (1996).
  • Kobayashi S, Inoue N, Ohashi Y et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler. Thromb. Vasc. Biol.23, 1398–1404 (2003).
  • Venugopal SK, Devaraj S, Jialal I. Macrophage conditioned medium induces the expression of C-reactive protein in human aortic endothelial cells: potential for paracrine/autocrine effects. Am. J. Pathol.166, 1265–1271 (2005).
  • Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation106, 1439–1441 (2002).
  • Singh U, Devaraj S, Vasquez-Vivar J, Jialal I. C-reactive protein decreases endothelial nitric oxide synthase activity via uncoupling. J. Mol. Cell Cardiol.43, 780–791 (2007).
  • Nagaoka T, Kuo L, Ren Y, Yoshida A, Hein TW. C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Invest. Ophthalmol. Vis. Sci.49, 2053–2060 (2008).
  • Qamirani E, Ren Y, Kuo L, Hein TW. C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler. Thromb. Vasc. Biol.25, 995–1001 (2005).
  • Toba H, Shimizu T, Miki S et al. Calcium [corrected] channel blockers reduce angiotensin II-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells. Hypertens. Res.2, 105–116 (2006).
  • Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ. Res.95, 877–883 (2004).
  • Singh U, Dasu MR, Yancey PG, Afify A, Devaraj S, Jialal I. Human C-reactive protein promotes oxidized low density lipoprotein uptake and matrix metalloproteinase-9 release in Wistar rats. J. Lipid Res.49, 1015–1023 (2008).
  • Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler. Thromb. Vasc. Biol.28, 519–526 (2008).
  • Campbell M, Trimble ER. Modification of PI3K- and MAPK-dependent chemotaxis in aortic vascular smooth muscle cells by protein kinase CbII. Circ. Res.96, 197–206 (2005).
  • Campbell M, Allen WE, Sawyer C, Vanhaesebroeck B, Trimble ER. Glucose-potentiated chemotaxis in human vascular smooth muscle is dependent on cross-talk between the PI3K and MAPK signaling pathways. Circ. Res.95, 380–388 (2004).
  • Yang EY, Nambi V, Tang Z et al. Clinical implications of JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) in a U.S. population insights from the ARIC (Atherosclerosis Risk in Communities) study. J. Am. Coll. Cardiol.54, 2388–2395 (2009).
  • Blaschke F, Bruemmer D, Yin F et al. C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation110, 579–587 (2004).
  • Nordestgaard BG, Zacho J. Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander? Nutr. Metab. Cardiovasc. Dis.19, 521–524 (2009).
  • Nordestgaard BG. Does elevated C-reactive protein cause human atherothrombosis? Novel insights from genetics, intervention trials, and elsewhere. Curr. Opin. Lipidol.20, 393–401 (2009).
  • Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis. Clin. Chem.55, 229–238 (2009).
  • Sessa R, Nicoletti M, Di Pietro M et al. Chlamydia pneumoniae and atherosclerosis: current state and future prospectives. Int. J. Immunopathol. Pharmacol.22, 9–14 (2009).
  • Napoli C, D’Armiento FP, Mancini FP et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest.100, 2680–2690 (1997).
  • Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med.122(Suppl. 1), S3–S14 (2009).
  • Ross R, Agius L. The process of atherogenesis – cellular and molecular interaction: from experimental animals to humans. Diabetologia35(Suppl. 2), S34–S40 (1992).
  • Seung KB, Park DW, Kim YH et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N. Engl. J. Med.358, 1781–1792 (2008).
  • Boden WE, Taggart DP. Diabetes with coronary disease – a moving target amid evolving therapies? N. Engl. J. Med.360, 2570–2572 (2009).
  • Boden WE. Acute coronary syndromes without ST-segment elevation – what is the role of early intervention? N. Engl. J. Med.353, 1159–1161 (2005).
  • Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci. Rep.19, 51–71 (1999).
  • Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch. Pharm. Res.32, 1103–1108 (2009).
  • Lavi S, Yang EH, Prasad A et al. The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension51, 127–133 (2008).
  • Schiffrin EL. The flame that lights the fire: oxidative stress, inflammation, and renal damage in angiotensin II-induced hypertension. Hypertension52, 205–206 (2008).
  • Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr. Atheroscler. Rep.6(4), 281–287 (2004).
  • Francis GA. High density lipoprotein oxidation: In vitro susceptibility and potential in vivo consequences. Biochim. Biophys. Acta1483, 217–235 (2000).
  • Tabas I, Tall A, Accili D. The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ. Res.106, 58–67 (2010).
  • Liang CP, Han S, Senokuchi T, Tall AR. The macrophage at the crossroads of insulin resistance and atherosclerosis. Circ. Res.100, 1546–1555 (2007).
  • Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol.10, 36–46 (2010).
  • Binder CJ, Cheung MK, Shaw PX et al. Innate and acquired immunity in atherogenesis. Nat. Med.8, 1218–1226 (2002).
  • Napoli C, Quehenberger O, De Nigris F, Abete P, Glass CK, Palinski W. Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J.14, 1996–2007 (2000).
  • Palinski W, Witztum JL. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J. Intern. Med.247, 371–380 (2000).
  • Nilsson J, Hansson GK, Shah PK. Immunomodulation of atherosclerosis: implications for vaccine development. Arterioscler. Thromb. Vasc. Biol.25, 18–28 (2005).
  • Shah PK, Chyu KY, Fredrikson GN, Nilsson J. Immunomodulation of atherosclerosis with a vaccine. Nat. Clin. Pract. Cardiovasc. Med.2, 639–646 (2005).
  • Fredrikson GN, Andersson L, Söderberg I et al. Atheroprotective immunization with MDA-modified Apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity38, 171–179 (2005).
  • Fredrikson GN, Söderberg I, Lindholm M et al. Inhibition of atherosclerosis in ApoE-null mice by immunization with ApoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol.23, 879–884 (2003).
  • Fredrikson GN, Anand DV, Hopkins D et al. Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with Type 2 diabetes. Diabetologia52, 1426–1433 (2009).
  • den Dekker WK, Cheng C, Pasterkamp G, Duckers HJ. Toll like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis209(2), 314–320 (2009).
  • Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis102, 63–67 (1993).
  • Inoue T, Uchida T, Kamishirado H, Takayanagi K, Hayashi T, Morooka S. Clinical significance of antibody against oxidized low density lipoprotein in patients with atherosclerotic coronary artery disease. J. Am. Coll. Cardiol.37, 775–779 (2001).
  • Tornvall P, Waeg G, Nilsson J, Hamsten A, Regnström J. Autoantibodies against modified low-density lipoproteins in coronary artery disease. Atherosclerosis167, 347–353 (2003).
  • Karvonen J, Päivänsalo M, Kesäniemi YA, Hörkkö S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation108, 2107–2112 (2003).
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). Lancet352, 837–853 (1998).
  • Patel A, MacMahon S, Chalmers J et al. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med.358, 2560–2572 (2008).
  • Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in Type 2 diabetes. N. Engl. J. Med.358, 2545– 2559 (2008).
  • Shafrir E, Raz I. Diabetes: mellitus or lipidus? Diabetologia46, 433–440 (2003).
  • Shafrir E, Gutman A. Patterns of decrease of free fatty acids during glucose tolerence tests. Diabetes14, 77–83 (1965).
  • Leaf A. Plasma nonesterified fatty acid concentration as a risk factor for sudden cardiac death: the Paris Prospective Study. Circulation104, 744–745 (2001).
  • Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA298, 299–308 (2007).
  • Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA298, 309–316 (2007).
  • Kamagate A, Dong HH. FOXO1 integrates insulin signaling to VLDL production. Cell Cycle7, 3162–3170 (2008).
  • Dong XC, Copps KD, Guo S et al. Inactivation of hepatic FOXO1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab.8, 65–76 (2008).
  • Musso G, Gambino R, Cassader M. Lipoprotein metabolism mediates the association of MTP polymorphism with β-cell dysfunction in healthy subjects and in nondiabetic normolipidemic patients with nonalcoholic steatohepatitis. J. Nutr. Biochem. DOI: 10.1016/j.jnutbio.2009.06.007 (2009) (Epub ahead of print).
  • Austin MA, McKnight B, Edwards KL et al. Cardiovascular disease mortality in familial forms of hypertriglyceridemia: a 20-year prospective study. Circulation101, 2777–2782 (2000).
  • Mahley RW, Rall SC. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In: The Metabolic & Molecular Bases of Inherited Disease (8th Edition). Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill, NY, USA, 2835–2862 (2001).
  • Sarti C, Gallagher J. The metabolic syndrome: prevalence, CHD risk, and treatment. J. Diabetes Complicat.20, 121–132 (2006).
  • Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, Apo C-II deficiency, and hepatic lipase deficiency. In: The Metabolic & Molecular Bases of Inherited Disease (8th Edition). Scriver CR, Beaudet AL, Sly WS, Valle D (Eds). McGraw-Hill, NY, USA, 2789–2816 (2001).
  • Halkes CJ, van Dijk H, de Jaegere PP et al. Postprandial increase of complement component 3 in normolipidemic patients with coronary artery disease: effects of expanded-dose simvastatin. Arterioscler. Thromb. Vasc. Biol.9, 1526–1530 (2001).
  • Bos G, Dekker JM, Nijpels G et al. A combination of high concentrations of serum triglyceride and non-high-density-lipoprotein-cholesterol is a risk factor for cardiovascular disease in subjects with abnormal glucose metabolism – the Hoorn Study. Diabetologia46, 910–916 (2003).
  • Schnohr P, Jensen JS, Scharling H, Nordestgaard BG. Coronary heart disease risk factors ranked by importance for the individual and community: a 21-year follow-up of 12 000 men and women from the Copenhagen City Heart Study. Eur. Heart J.23, 620–626 (2002).
  • Sarwar N, Danesh J, Eiriksdottir G et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation115, 450–458 (2007).
  • No authors listed. Effect of fenofibrate on progression of coronary-artery disease in Type 2 diabetes: the Diabetes Atherosclerosis Intervention Study (DAIS), a randomised study. Lancet357, 905–910 (2001).
  • Keech A, Simes RJ, Barter P et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with Type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet366, 1849–1861 (2005).
  • Fiévet C, Staels B. Combination therapy of statins and fibrates in the management of cardiovascular risk. Curr. Opin. Lipidol.20, 505–511 (2009).
  • Meade T, Zuhrie R, Cook C, Cooper J. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. Br. Med. J.325, 1139 (2002).
  • Kinoshita M, Kojima M, Matsushima T, Teramoto T. Determination of apolipoprotein B-48 in serum by a sandwich ELISA. Clin. Chim. Acta351, 115–120 (2005).
  • Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation60, 473–485 (1979).
  • Karpe F, Steiner G, Uffelman K, Olivercrona T, Hamsten A. Postprandial lipoproteins and the progression of coronary atherosclerosis. Atherosclerosis106, 83–97 (1994).
  • Hopkins PN, Heiss G, Ellison RC et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case–control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation108, 519–523 (2003).
  • Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler. Thromb. Vasc. Biol.23, 1595–1600 (2003).
  • Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin. Chem. Lab. Med.41, 792–795 (2003).
  • Nakano T, Nakajima K, Niimi M et al. Detection of apolipoproteins B-48 and B-100 carrying particles in lipoprotein fractions extracted from human aortic atherosclerotic plaques in sudden cardiac death cases. Clin. Chim. Acta390, 38–43 (2008).
  • Floren CH, Chait A. Uptake of chylomicron remnants by the native LDL receptor in human monocyte-derived macrophages. Biochim. Biophys. Acta665, 608–611 (1981).
  • Gianturco SH, Ramprasad MP, Lin AH, Song R, Bradley WA. Cellular binding site and membrane binding proteins for triglyceride-rich lipoproteins in human monocyte-macrophages and THP-1 monocytic cells. J. Lipid Res.35, 1674–1687 (1994).
  • Gianturco SH, Brown SA, Via DP, Bradley WA. The β-VLDL receptor pathway of murine P388D1 macrophages. J. Lipid Res.27, 412–420 (1986).
  • Elsegood CL, Pal S, Roach PD, Mamo JC. Binding and uptake of chylomicron remnants by primary and THP-1 human monocyte-derived macrophages: determination of binding proteins. Clin. Sci. (Lond.)101, 111–119 (2001).
  • Elsegood CL, Mamo JC. An investigation by electron microscopy of chylomicron remnant uptake by human monocyte-derived macrophages. Atherosclerosis188, 251–259 (2006).
  • Cohn JS. Are we ready for a prospective study to investigate the role of chylomicrons in cardiovascular disease? Atherosclerosis Suppl.9, 15–18 (2008).
  • Phillips C, Murugasu G, Owens D, Collins P, Johnson A, Tomkin GH. Improved metabolic control reduces the number of postprandial apolipoprotein B-48-containing particles in Type 2 diabetes. Atherosclerosis148, 283–291 (2000).
  • Miettinen TA, Gylling H, Tuominen J, Simonen P, Koivisto V. Low synthesis and high absorption of cholesterol characterize Type 1 diabetes. Diabetes Care27, 53–58 (2004).
  • Kern F Jr. Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day. Mechanisms of adaptation. N. Engl. J. Med.324, 896–899 (1991).
  • Altmann SW, Davis HR Jr, Zhu IJ et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science303, 1201–1204 (2004).
  • Valasek MA, Clarke SL, Repa JJ. Fenofibrate reduces intestinal cholesterol absorption via PPAR{α}-dependent modulation of NPC1L1 expression in mouse. J. Lipid Res.48, 2725–2735 (2007).
  • Oliver WR Jr, Shenk JL, Snaith MR et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport Proc. Natl Acad. Sci. USA98, 5306–5311 (2001).
  • Vrins CL, Van der Velde AE, Van den Oever K et al. PPARd activation leads to increased trans intestinal cholesterol efflux. J. Lipid Res.50, 2046–2054 (2009).
  • Matthan NR, Pencina M, LaRocque JM et al. Alterations in cholesterol absorption/synthesis markers characterize Framingham offspring study participants with CHD. J. Lipid Res.50, 1927–1935 (2009).
  • Silbernagel G, Fauler G, Renner W et al. The relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease. J. Lipid Res.50, 334–341 (2009).
  • Yamanashi Y, Takada T, Suzuki H. In vitro characterization of the six clustered variants of NPC1L1 observed in cholesterol low absorbers. Pharmacogenet. Genomics19(11), 884–892 (2009).
  • Simon JS, Karnoub MC, Devlin DJ et al. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics86, 648–656 (2005).
  • Polisecki E, Peter I, Simon JS et al. Genetic variation at the NPC1L1 gene locus, plasma lipoproteins, and heart disease risk in the elderly. J. Lipid Res.51(5), 1201–1207 (2009).
  • Lally S, Owens D, Tomkin GH. The different effect of pioglitazone as compared to insulin on expression of hepatic and intestinal genes regulating post-prandial lipoproteins in diabetes. Atherosclerosis193, 343–351 (2007).
  • Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in Type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia49, 1008–1016 (2006).
  • Staprans I, Pan XM, Rapp JH, Moser AH, Feingold KR. Ezetimibe inhibits the incorporation of dietary oxidized cholesterol into lipoproteins. J. Lipid Res.47, 2575–2580 (2006).
  • Berge KE, Tian H, Graf GA et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science290, 1771–1775 (2000).
  • Kosters A, Kunne C, Looije N, Patel SB, Oude Elferink RP, Groen AK. The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J. Lipid Res.47, 1959–1966 (2006).
  • Graf GA, Yu L, Li WP et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary excretion. J. Biol. Chem.278, 48275–48282 (2003).
  • Wang HH, Patel SB, Carey MC, Wang DQ. Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in ABCG8(-/-) mice. Hepatology45, 998–1006 (2007).
  • Santosa S, Demonty I, Lichtenstein AH, Ordovas JM, Jones PJ. Single nucleotide polymorphisms in ABCG5 and ABCG8 are associated with changes in cholesterol metabolism during weight loss. J. Lipid Res.48, 2607–2613 (2007).
  • Gylling H, Hallikainen M, Pihlajamäki J et al. Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J. Lipid Res.45, 1660–1665 (2004).
  • Bloks VW, Bakker-Van Waarde WM, Verkade HJ et al. Down-regulation of hepatic and intestinal ABCG5 and ABCG8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes. Diabetologia47, 104–112 (2004).
  • Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption and chylomicron assembly. The relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism56, 430–438 (2007).
  • Phillips C, Mullan K, Owens D, Tomkin GH. A common microsomal triglyceride transfer protein polymorphism significantly reduces low density lipoprotein cholesterol in Type 2 diabetic patients through its effect on the triglyceride-rich lipoproteins. QJM97, 211–218 (2004).
  • Karpe F, Lundahl B, Ehrenborg E, Eriksson P, Hamsten A. A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Atheroscler. Thromb. Vasc. Biol.18(5), 756–761 (1998).
  • Ledmyr H, McMahon AD, Ehrenborg E et al. The microsomal triglyceride transfer protein gene-493T variant lowers cholesterol but increases the risk of coronary heart disease. Circulation109, 2279–2284 (2004).
  • Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc. Disord.5, 30 (2005).
  • Bernard S, Touzet S, Personne I et al. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with Type II diabetes. Diabetologia43, 995–999 (2000).
  • Okumura K, Imamura A, Murakami R et al. Microsomal triglyceride transfer protein gene polymorphism strongly influences circulating malondialdehyde-modified low-density lipoprotein. Metabolism58, 1306–1311 (2009).
  • Gleeson A, Anderton K, Owens D et al. The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia42, 944–949 (1999).
  • Phillips C, Anderton K, Bennett A et al. Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidaemia in diabetes. Metabolism51, 847–852 (2002).
  • Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta368, 1–19 (2006).
  • Zoltowska M, Ziv E, Delvin E et al. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and Type 2 diabetes. Diabetes52, 2539–2545 (2003).
  • Lewis GF, Uffelman K, Naples M et al. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian Golden hamster. Endocrinology146, 247–255 (2005).
  • Phillips C, Mullan K, Owens D, Tomkin GH. Intestinal microsomal triglyceride transfer protein in Type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis187, 57–64 (2006).
  • Iqbal J, Li X, Chang BH et al. An intrinsic gut leptin melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. J. Lipid Res.51(7), 1929–1942 (2010).
  • Serrano CV Jr, Pesaro AE, de Lemos JA et al. Native LDL-cholesterol mediated monocyte adhesion molecule overexpression is blocked by simvastatin. Cardiovasc. Drugs Ther.3, 215–220 (2009).
  • Norata GD, Raselli S, Grigore L et al. Small dense LDL and VLDL predict common carotid artery IMT and elicit an inflammatory response in peripheral blood mononuclear and endothelial cells. Atherosclerosis206, 556–562 (2009).
  • Cipolletta C, Ryan KE, Hanna EV, Trimble ER. Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes54, 2779–2786 (2005).
  • Bourdon E, Loreau N, Blache D. Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J.13, 233–244 (1999).
  • Cnop M, Hannaert JC, Grupping AY, Pipeleers DG. Low density lipoprotein can cause death of islet β-cells by its cellular uptake and oxidative modification. Endocrinology143, 3449–3453 (2002).
  • Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia46, 733–749 (2003).
  • Rizzo M, Rini GB, Berneis K. The clinical relevance of LDL size and subclasses modulation in patients with Type 2 diabetes. Exp. Clin. Endocrinol. Diabetes115, 477–482 (2007).
  • Phillips C, Owens D, Mullan K, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis181, 100–114 (2005).
  • Young IS, McFarlane C, McEneny J. Oxidative modification of triacylglycerol-rich lipoproteins. Biochem. Soc. Trans.31(Pt 5), 1062–1065 (2003).
  • Lam TK, Gutierrez-Juarez R, Pocai A et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat. Med.13, 171–180 (2007).
  • Elkeles RS. Coronary artery calcium and cardiovascular risk in diabetes. Atherosclerosis210(2), 331–336 (2010).
  • O’Meara NM, Devery RA, Owens D, Collins PB, Johnson AH, Tomkin GH. Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes39, 626–633 (1990).
  • Feingold KR. Importance of small intestine in diabetic hypercholesterolemia. Diabetes38, 141–145 (1989).
  • Devery R, O’Meara N, Collins P, Johnson A, Scott L, Tomkin GH. A comparative study of the rate-limiting enzymes of cholesterol synthesis, esterification and catabolism in the alloxan-induced diabetic rat and rabbit. Comp. Biochem. Physiol.87b, 697–702 (1987).
  • Sittiwet C, Gylling H, Hallikainen M et al. Cholesterol metabolism and non-cholesterol sterol distribution in lipoproteins of Type 1 diabetes: the effect of improved glycemic control. Atherosclerosis194, 465–472 (2007).
  • Matikainen N, Mänttäri S, Schweizer A et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with Type 2 diabetes. Diabetologia49, 2049–2057 (2006).
  • Feingold KR, Soued M, Adi S et al. Tumor necrosis factor-increased hepatic very-low-density lipoprotein production and increased serum triglyceride levels in diabetic rats. Diabetes39, 1569–1574 (1990).
  • Federico LM, Naples M, Taylor D, Adeli K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes55, 1316–1326 (2006).
  • Qin B, Qiu W, Avramoglu RK, Adeli K. Tumor necrosis factor-α induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes56, 450–461 (2007).
  • Phillips C, Madigan C, Owens D, Collins P, Tomkin GH. Defective chylomicron synthesis as a cause of delayed particle clearance in diabetes? Int. J. Exp. Diabetes Res.3, 171–178 (2002).
  • Gleeson A, Owens D, Collins P, Johnson A, Tomkin GH. The relationship between cholesterol absorption and intestinal cholesterol synthesis in the diabetic rat model. Int. J. Exp. Diabetes Res.1, 203–210 (2000).
  • Dormandy JA, Charbonnel B, Eckland DJ et al.; Proactive Investigators. Secondary prevention of macrovascular events in patients with Type 2 diabetes in the Proactive Study (Prospective Pioglitazone Clinical Trial in Macrovascular Events): a randomised controlled trial. Lancet366, 1279–1289 (2005).
  • Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with Type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA298, 1180–1188 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.