259
Views
35
CrossRef citations to date
0
Altmetric
Review

Cholesterol and cardiac arrhythmias

, , , &
Pages 965-979 | Published online: 10 Jan 2014

References

  • Fuster V, Ryden LE, Cannom DS et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation114(7), e257–e354 (2006).
  • Chamorro A. Dual antiplatelet therapy is not optimal for stroke prevention in patients with atrial fibrillation. Int. J. Stroke5(1), 28–29 (2010).
  • Hopps S, Marcy TR. Warfarin versus aspirin: using CHADS2 to guide therapy for stroke prevention in nonvalvular atrial fibrillation. Consult. Pharm.24(11), 841–844 (2009).
  • Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J. Clin. Invest.115(9), 2305–2315 (2005).
  • Kannel WB, Wilson PW. An update on coronary risk factors. Med. Clin. North Am.79(5), 951–971 (1995).
  • Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor Intervention Trial Research Group. Arch. Intern. Med.152(1), 56–64 (1992).
  • Saini HK, Arneja AS, Dhalla NS. Role of cholesterol in cardiovascular dysfunction. Can. J. Cardiol.20(3), 333–346 (2004).
  • Annoura M, Ogawa M, Kumagai K, Zhang B, Saku K, Arakawa K. Cholesterol paradox in patients with paroxysmal atrial fibrillation. Cardiology92(1), 21–27 (1999).
  • Imaizumi S, Miura S, Nakamura K et al. Antiarrhythmogenic effect of reconstituted high-density lipoprotein against ischemia/reperfusion in rats. J. Am. Coll. Cardiol.51(16), 1604–1612 (2008).
  • Liu YB, Wu CC, Lu LS et al. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ. Res.92(10), 1145–1152 (2003).
  • Liu YB, Wu CC, Lee CM et al. Dyslipidemia is associated with ventricular tachyarrhythmia in patients with acute ST-segment elevation myocardial infarction. J. Formos. Med. Assoc.105(1), 17–24 (2006).
  • Mochizuki S, Okumura M, Tanaka F et al. Ischemia-reperfusion arrhythmias and lipids: effect of human high- and low-density lipoproteins on reperfusion arrhythmias. Cardiovasc. Drugs Ther.5(Suppl. 2), 269–276 (1991).
  • Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem.264(7), 3786–3793 (1989).
  • Bastiaanse EM, Hold KM, van der Laarse A. The effect of membrane cholesterol content on ion transport processes in plasma membranes. Cardiovasc. Res.33(2), 272–283 (1997).
  • Yeagle PL. Lipid regulation of cell membrane structure and function. FASEB J.3(7), 1833–1842 (1989).
  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem.275(23), 17221–17224 (2000).
  • Pike LJ. Lipid rafts: bringing order to chaos. J. Lipid Res.44(4), 655–667 (2003).
  • Schroeder F, Jefferson JR, Kier AB et al. Membrane cholesterol dynamics: cholesterol domains and kinetic pools. Proc. Soc. Exp. Biol. Med.196(3), 235–252 (1991).
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature387(6633), 569–572 (1997).
  • Bloch K. The biological synthesis of cholesterol. Science150(692), 19–28 (1965).
  • Daniels TF, Killinger KM, Michal JJ, Wright RW Jr, Jiang Z. Lipoproteins, cholesterol homeostasis and cardiac health. Int. J. Biol. Sci.5(5), 474–488 (2009).
  • Ostlund RE Jr, Bosner MS, Stenson WF. Cholesterol absorption efficiency declines at moderate dietary doses in normal human subjects. J. Lipid Res.40(8), 1453–1458 (1999).
  • Gylling H, Miettinen TA. The effect of cholesterol absorption inhibition on low density lipoprotein cholesterol level. Atherosclerosis117(2), 305–308 (1995).
  • Fielding CJ. Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration. FASEB J.6(13), 3162–3168 (1992).
  • van der Laarse A. Cholesterol and myocardial membrane function. Basic Res. Cardiol.82(Suppl. 1), 137–145 (1987).
  • Davis RA, Sinensky M, Junker LH. Regulation of cholesterol synthesis and the potential for its pharmacologic manipulation. Pharmacol. Ther.43(2), 221–236 (1989).
  • Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC. Cholesterol transport between cells and high-density lipoproteins. Biochim. Biophys. Acta1085(3), 273–298 (1991).
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science175(23), 720–731 (1972).
  • Cooper RA, Leslie MH, Fischkoff S, Shinitzky M, Shattil SJ. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. Biochemistry17(2), 327–331 (1978).
  • Vanderkooi J, Fischkoff S, Chance B, Cooper RA. Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes. Biochemistry13(8), 1589–1595 (1974).
  • Pritchard KA Jr, Schwarz SM, Medow MS, Stemerman MB. Effect of low-density lipoprotein on endothelial cell membrane fluidity and mononuclear cell attachment. Am. J. Physiol260(1 Pt 1), C43–C49 (1991).
  • Papahadjopoulos D, Cowden M, Kimelberg H. Role of cholesterol in membranes. Effects on phospholipid–protein interactions, membrane permeability and enzymatic activity. Biochim. Biophys. Acta330(1), 8–26 (1973).
  • Papahadjopoulos D, Watkins JC. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim. Biophys. Acta135(4), 639–652 (1967).
  • Demel RA, Kinsky SC, Kinsky CB, van Deenen LL. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins. Biochim. Biophys. Acta150(4), 655–665 (1968).
  • de Gier J, Mandersloot JG, van Deenen LL. Lipid composition and permeability of liposomes. Biochim. Biophys. Acta150(4), 666–675 (1968).
  • Bonting SL, van Breugel PJ, Daemen FJ. Influence of the lipid environment of the properties of rhodopsin in the photoreceptor membrane. Adv. Exp. Med. Biol.83, 175–189 (1977).
  • Finkelstein A, Cass A. Effect of cholesterol on the water permeability of thin lipid membranes. Nature216(5116), 717–718 (1967).
  • Bruckdorfer KR, Demel RA, de Gier J, van Deenen LL. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes. Biochim. Biophys. Acta183(2), 334–345 (1969).
  • Kroes J, Ostwald R. Erythrocyte membranes – effect of increased cholesterol content on permeability. Biochim. Biophys. Acta249(2), 647–650 (1971).
  • Ren J, Lew S, Wang Z, London E. Transmembrane orientation of hydrophobic a-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry36(33), 10213–10220 (1997).
  • Ren J, Lew S, Wang J, London E. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry38(18), 5905–5912 (1999).
  • Aman MJ, Ravichandran KS. A requirement for lipid rafts in B cell receptor induced Ca(2+) flux. Curr. Biol.10(7), 393–396 (2000).
  • Brown DA, London E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol.14, 111–136 (1998).
  • Maguy A, Hebert TE, Nattel S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc. Res.69(4), 798–807 (2006).
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol.1(1), 31–39 (2000).
  • Xavier R, Brennan T, Li Q, McCormack C, Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity8(6), 723–732 (1998).
  • Christian AE, Haynes MP, Phillips MC, Rothblat GH. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res.38(11), 2264–2272 (1997).
  • Lundbaek JA, Birn P, Hansen AJ et al. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol123(5), 599–621 (2004).
  • Pouvreau S, Berthier C, Blaineau S, Amsellem J, Coronado R, Strube C. Membrane cholesterol modulates dihydropyridine receptor function in mice fetal skeletal muscle cells. J. Physiol.555(Pt 2), 365–381 (2004).
  • Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J. Biol. Chem.276(11), 8409–8414 (2001).
  • Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D. Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ. Res.94(10), 1325–1331 (2004).
  • Garg V, Jiao J, Hu K. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes. Cardiovasc. Res.82(1), 51–58 (2009).
  • Bossuyt J, Taylor BE, James-Kracke M, Hale CC. The cardiac sodium–calcium exchanger associates with caveolin-3. Ann. NY Acad. Sci.976, 197–204 (2002).
  • Cavalli A, Eghbali M, Minosyan TY, Stefani E, Philipson KD. Localization of sarcolemmal proteins to lipid rafts in the myocardium. Cell Calc.42(3), 313–322 (2007).
  • Kutryk MJ, Pierce GN. Stimulation of sodium–calcium exchange by cholesterol incorporation into isolated cardiac sarcolemmal vesicles. J. Biol. Chem.263(26), 13167–13172 (1988).
  • Varga A, Bagossi P, Tozser J, Peitl B, Szilvassy Z. Effect of experimental hypercholesterolaemia on K+ channel a-subunit mRNA levels in rabbit hearts. Eur. J. Pharmacol.562(1–2), 130–131 (2007).
  • Abi-Char J, Maguy A, Coulornbe A et al. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes. J. Physiol. (Lond.)582(3), 1205–1217 (2007).
  • Romanenko VG, Fang Y, Byfield F et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J.87(6), 3850–3861 (2004).
  • Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl Acad. Sci. USA106(19), 8055–8060 (2009).
  • Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science304(5668), 265–270 (2004).
  • Eldstrom J, Van Wagoner DR, Moore ED, Fedida D. Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Lett.580(26), 6039–6046 (2006).
  • Locke D, Liu J, Harris AL. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts. Biochemistry44(39), 13027–13042 (2005).
  • Yarbrough TL, Lu T, Lee HC, Shibata EF. Localization of cardiac sodium channels in caveolin-rich membrane domains – regulation of sodium current amplitude. Circ. Res.90(4), 443–449 (2002).
  • Balse E, El-Haou S, Dillanian G et al. Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proc. Natl Acad. Sci. USA106(34), 14681–14686 (2009).
  • O’Connell KMS, Tamkun MM. Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J. Cell Sci.118(10), 2155–2166 (2005).
  • Tamkun MM, Knoth KM, Walbridge JA, Kroemer H, Roden DM, Glover DH. Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J.5, 331–337 (1991).
  • Fang Y, Emile RM, Hsieh E et al. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ. Res.98(8), 1064–1071 (2006).
  • Romanenko VG, Rothblat GH, Levitan I. Sensitivity of volume-regulated anion current to cholesterol structural analogues. J. Gen. Physiol123(1), 77–87 (2004).
  • O’Connell KM, Martens JR, Tamkun MM. Localization of ion channels to lipid raft domains within the cardiovascular system. Trends Cardiovasc. Med.14(2), 37–42 (2004).
  • Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ. Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for β(2)-adrenergic regulation. Proc. Natl Acad. Sci. USA103(19), 7500–7505 (2006).
  • Molina ML, Barrera FN, Fernandez AM et al. Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J. Biol. Chem.281(27), 18837–18848 (2006).
  • Alivisatos SG, Papastavrou C, Drouka-Liapati E, Molyvdas AP, Nikitopoulou G. Enzymatic and electrophysiological changes of the function of membrane proteins by cholesterol. Biochem. Biophys. Res. Commun.79(3), 677–683 (1977).
  • Vemuri R, Philipson KD. Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters. J. Biol. Chem.264(15), 8680–8685 (1989).
  • Gray DF, Bundgaard H, Hansen PS et al. HMG CoA reductase inhibition reduces sarcolemmal Na(+)–K(+) pump density. Cardiovasc. Res.47(2), 329–335 (2000).
  • Buhagiar KA, Hansen PS, Kong BY, Clarke RJ, Fernandes C, Rasmussen HH. Dietary cholesterol alters Na+/K+ selectivity at intracellular Na+/K+ pump sites in cardiac myocytes. Am. J. Physiol. Cell Physiol.286(2), C398–C405 (2004).
  • Fielding CJ. Caveolae and signaling. Curr.Opin. Lipidol.12(3), 281–287 (2001).
  • Liu L, Mohammadi K, Aynafshar B et al. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am. J. Physiol. Cell Physiol.284(6), C1550–C1560 (2003).
  • Ortega A, Mas-Oliva J. Cholesterol effect on enzyme activity of the sarcolemmal (Ca2+ + Mg2+)-ATPase from cardiac muscle. Biochim. Biophys. Acta773(2), 231–236 (1984).
  • Bastiaanse EM, Atsma DE, Kuijpers MM, Van der Laarse A. The effect of sarcolemmal cholesterol content on intracellular calcium ion concentration in cultured cardiomyocytes. Arch. Biochem. Biophys.313(1), 58–63 (1994).
  • Ortega A, Mas-Oliva J. Direct regulatory effect of cholesterol on the calmodulin stimulated calcium pump of cardiac sarcolemma. Biochem. Biophys. Res. Commun.139(3), 868–874 (1986).
  • Warren GB, Houslay MD, Metcalfe JC, Birdsall NJ. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature255(5511), 684–687 (1975).
  • Barnett JV, Haigh LS, Marsh JD, Galper JB. Effects of low density lipoproteins and mevinolin on sympathetic responsiveness in cultured chick atrial cells. Regulation of β-adrenergic receptors and as. J. Biol. Chem.264(18), 10779–10786 (1989).
  • Head BP, Patel HH, Roth DM et al. G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J. Biol. Chem.280(35), 31036–31044 (2005).
  • Rybin VO, Pak E, Alcott S, Steinberg SF. Developmental changes in β2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol. Pharmacol.63(6), 1338–1348 (2003).
  • Xiang Y, Rybin VO, Steinberg SF, Kobilka B. Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem.277(37), 34280–34286 (2002).
  • Cherezov V, Rosenbaum DM, Hanson MA et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science318(5854), 1258–1265 (2007).
  • Hanson MA, Cherezov V, Griffith MT et al. A specific cholesterol binding site is established by the 2.8 A structure of the human β2-adrenergic receptor. Structure16(6), 897–905 (2008).
  • Borroni V, Baier CJ, Lang T et al. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol. Membr. Biol.24(1), 1–15 (2007).
  • Chen H, Yang J, Low PS, Cheng JX. Cholesterol level regulates endosome motility via Rab proteins. Biophys J.94(4), 1508–1520 (2008).
  • Choudhury A, Sharma DK, Marks DL, Pagano RE. Elevated endosomal cholesterol levels in Niemann–Pick cells inhibit Rab4 and perturb membrane recycling. Mol. Biol. Cell15(10), 4500–4511 (2004).
  • Dotani MI, Elnicki DM, Jain AC, Gibson CM. Effect of preoperative statin therapy and cardiac outcomes after coronary artery bypass grafting. Am. J. Cardiol.86(10), 1128–1130, A6 (2000).
  • McEwen DP, Schumacher SM, Li Q et al. Rab-GTPase-dependent endocytic recycling of KV1.5 in atrial myocytes. J. Biol. Chem.282(40), 29612–29620 (2007).
  • Seebohm G, Strutz-Seebohm N, Birkin R et al. Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ. Res.100(5), 686–692 (2007).
  • Zadeh AD, Xu HJ, Loewen ME, Noble GP, Steele DF, Fedida D. Internalized Kv1.5 traffics via Rab-dependent pathways. J. Physiol. (Lond.)586(20), 4793–4813 (2008).
  • Holtta-Vuori M, Tanhuanpaa K, Mobius W, Somerharju P, Ikonen E. Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol. Biol. Cell13(9), 3107–3122 (2002).
  • Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through Rab11. Mol. Biol. Cell18(7), 2667–2677 (2007).
  • Hao M, Mukherjee S, Sun Y, Maxfield FR. Effects of cholesterol depletion and increased lipid unsaturation on the properties of endocytic membranes. J. Biol. Chem.279(14), 14171–14178 (2004).
  • Vercauteren D, Vandenbroucke RE, Jones AT et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther.18(3), 561–569 (2010).
  • Brown MS, Goldstein JL. Sterol regulatory element binding proteins (SREBPs): controllers of lipid synthesis and cellular uptake. Nutr. Rev.56(2 Pt 2), S1–S3 (1998).
  • Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation101(2), 207–213 (2000).
  • Vaughan CJ, Gotto AM Jr, Basson CT. The evolving role of statins in the management of atherosclerosis. J. Am. Coll. Cardiol.35(1), 1–10 (2000).
  • Hadi HA, Mahmeed WA, Suwaidi JA, Ellahham S. Pleiotropic effects of statins in atrial fibrillation patients: the evidence. Vasc. Health Risk Manag.5(3), 533–551 (2009).
  • Tamargo J, Caballero R, Gomez R, Nunez L, Vaquero M, Delpon E. Lipid-lowering therapy with statins, a new approach to antiarrhythmic therapy. Pharmacol. Ther.114(1), 107–126 (2007).
  • Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br. J. Clin. Pharmacol.57(5), 640–651 (2004).
  • Chen J, Nagasawa Y, Zhu BM et al. Pravastatin prevents arrhythmias induced by coronary artery ischemia/reperfusion in anesthetized normocholesterolemic rats. J. Pharmacol. Sci.93(1), 87–94 (2003).
  • Lazar HL, Bao Y, Zhang Y, Bernard SA. Pretreatment with statins enhances myocardial protection during coronary revascularization. J. Thorac. Cardiovasc. Surg.125(5), 1037–1042 (2003).
  • Vyas AK, Guo H, Moss AJ et al. Reduction in ventricular tachyarrhythmias with statins in the Multicenter Automatic Defibrillator Implantation Trial (MADIT)-II. J. Am. Coll. Cardiol.47(4), 769–773 (2006).
  • Chiu JH, Abdelhadi RH, Chung MK et al. Effect of statin therapy on risk of ventricular arrhythmia among patients with coronary artery disease and an implantable cardioverter-defibrillator. Am. J. Cardiol.95(4), 490–491 (2005).
  • Bunch TJ, Kottke TE, Lopez-Jimenez F, Mahapatra S, Elesber AA, White RD. A comparative analysis of short- and long-term outcomes after ventricular fibrillation out-of-hospital cardiac arrest in patients with ischemic and nonischemic heart disease. Am. J. Cardiol.98(7), 857–860 (2006).
  • Goldberger JJ, Subacius H, Schaechter A et al. Effects of statin therapy on arrhythmic events and survival in patients with nonischemic dilated cardiomyopathy. J. Am. Coll. Cardiol.48(6), 1228–1233 (2006).
  • De Sutter J, Tavernier R, De Buyzere M, Jordaens L, de Backer G. Lipid lowering drugs and recurrences of life-threatening ventricular arrhythmias in high-risk patients. J. Am. Coll. Cardiol.36(3), 766–772 (2000).
  • Riahi S, Schmidt EB, Christensen JH et al. Statins, ventricular arrhythmias and heart rate variability in patients with implantable cardioverter defibrillators and coronary heart disease. Cardiology104(4), 210–214 (2005).
  • Fonarow GC, Wright RS, Spencer FA et al. Effect of statin use within the first 24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am. J. Cardiol.96(5), 611–616 (2005).
  • Vedre A, Gurm HS, Froehlich JB et al. Impact of prior statin therapy on arrhythmic events in patients with acute coronary syndromes (from the Global Registry of Acute Coronary Events [GRACE]). Am. J. Cardiol.104(12), 1613–1617 (2009).
  • Kayikcioglu M, Can L, Evrengul H, Payzin S, Kultursay H. The effect of statin therapy on ventricular late potentials in acute myocardial infarction. Int. J. Cardiol.90(1), 63–72 (2003).
  • Spencer FA, Fonarow GC, Frederick PD et al. Early withdrawal of statin therapy in patients with non-ST-segment elevation myocardial infarction: national registry of myocardial infarction. Arch. Intern. Med.164(19), 2162–2168 (2004).
  • Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res.62(1), 105–111 (2004).
  • Shiroshita-Takeshita A, Schram G, Lavoie J, Nattel S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation110(16), 2313–2319 (2004).
  • Young-Xu Y, Jabbour S, Goldberg R et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. Am. J. Cardiol.92(12), 1379–1383 (2003).
  • Siu CW, Lau CP, Tse HF. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. Am. J. Cardiol.92(11), 1343–1345 (2003).
  • Ozaydin M, Varol E, Aslan SM et al. Effect of atorvastatin on the recurrence rates of atrial fibrillation after electrical cardioversion. Am. J. Cardiol.97(10), 1490–1493 (2006).
  • Brundel BJ, Van Gelder IC, Henning RH et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J. Am. Coll. Cardiol.37(3), 926–932 (2001).
  • Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res.80, 772–781 (1997).
  • Tveit A, Grundtvig M, Gundersen T et al. Analysis of pravastatin to prevent recurrence of atrial fibrillation after electrical cardioversion. Am. J. Cardiol.93(6), 780–782 (2004).
  • Marin F, Pascual DA, Roldan V et al. Statins and postoperative risk of atrial fibrillation following coronary artery bypass grafting. Am. J. Cardiol.97(1), 55–60 (2006).
  • Patti G, Chello M, Candura D et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of Myocardial Dysrhythmia After Cardiac Surgery) study. Circulation114(14), 1455–1461 (2006).
  • Amar D, Zhang H, Heerdt PM, Park B, Fleisher M, Thaler HT. Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein. Chest128(5), 3421–3427 (2005).
  • Abuissa H, O’Keefe JH, Bybee KA. Statins as antiarrhythmics: a systematic review part I: effects on risk of atrial fibrillation. Clin. Cardiol.32(10), 544–548 (2009).
  • Abuissa H, O’Keefe JH, Bybee KA. Statins as anti-arrhythmics: a systematic review part II: effects on risk of ventricular arrhythmias. Clin. Cardiol.32(10), 549–552 (2009).
  • Lijnen P, Celis H, Fagard R, Staessen J, Amery A. Influence of cholesterol lowering on plasma membrane lipids and cationic transport systems. J. Hypertens.12(1), 59–64 (1994).
  • Tesfamariam B, Frohlich BH, Gregg RE. Differential effects of pravastatin, simvastatin, and atorvastatin on Ca2+ release and vascular reactivity. J. Cardiovasc. Pharmacol.34(1), 95–101 (1999).
  • Yokoyama K, Ishibashi T, Ohkawara H et al. HMG-CoA reductase inhibitors suppress intracellular calcium mobilization and membrane current induced by lysophosphatidylcholine in endothelial cells. Circulation105(8), 962–967 (2002).
  • Li L, Matsuoka I, Suzuki Y et al. Inhibitory effect of fluvastatin on lysophosphatidylcholine-induced nonselective cation current in guinea pig ventricular myocytes. Mol. Pharmacol.62(3), 602–607 (2002).
  • Vaquero M, Caballero R, Gomez R, Nunez L, Tamargo J, Delpon E. Effects of atorvastatin and simvastatin on atrial plateau currents. J. Mol. Cell Cardiol.42(5), 931–945 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.