415
Views
30
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging & Diagnostic Techniques - Review

Metabolomic profiling as a useful tool for diagnosis and treatment of chronic disease: focus on obesity, diabetes and cardiovascular diseases

, &
Pages 61-68 | Published online: 10 Jan 2014

References

  • Sowers JR. Obesity as a cardiovascular risk factor. Am. J. Med. 115(Suppl. 8A), S37–S41 (2003).
  • Roger VL, Go AS, Lloyd-Jones DM et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125(1), e2–e220 (2012).
  • National Health and Nutrition Examination Survey (NHANES) 2007–2008. : Centers for Disease Control and Prevention (2011).
  • The World Health Report: health systems financing. World Health Organization, Geneva, Switzerland. (2012).
  • Watson KE, Fonarow GC. The past, present, and future of statin therapy. Rev. Cardiovasc. Med. 6(3), 129–139 (2005).
  • Rosenblit PD. Do persons with diabetes benefit from combination statin and fibrate therapy? Curr. Cardiol. Rep. 14(1), 112–124 (2012).
  • Chokrungvaranon N, Deer J, Reaven PD. Intensive glycemic control and cardiovascular disease: are there patients who may benefit? Postgrad. Med. 123(6), 114–123 (2011).
  • Kim JY, Park JY, Kim OY et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J. Proteome Res. 9(9), 4368–4375 (2010).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29(11), 1181–1189 (1999).
  • Weckwerth W. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689 (2003).
  • Newgard CB, An J, Bain JR et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9(4), 311–326 (2009).
  • Williams R, Lenz EM, Wilson AJ et al. A multi-analytical platform approach to the metabonomic analysis of plasma from normal and Zucker (fa/fa) obese rats. Mol. Biosyst. 2(3–4), 174–183 (2006).
  • Serkova NJ, Jackman M, Brown JL et al. Metabolic profiling of livers and blood from obese Zucker rats. J. Hepatol. 44(5), 956–962 (2006).
  • Shearer J, Duggan G, Weljie A, Hittel DS, Wasserman DH, Vogel HJ. Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes. Obes. Metab. 10(10), 950–958 (2008).
  • Zhang X, Wang Y, Hao F et al. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J. Proteome Res. 8(11), 5188–5195 (2009).
  • Bao Y, Zhao T, Wang X et al. Metabonomic variations in the drug-treated Type 2 diabetes mellitus patients and healthy volunteers. J. Proteome Res. 8(4), 1623–1630 (2009).
  • Brindle JT, Antti H, Holmes E et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8(12), 1439–1444 (2002).
  • Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics 6(17), 4716–4723 (2006).
  • Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers for human prostate cancer. Expert Rev. Proteomics 4(3), 389–400 (2007).
  • Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance. Prog. NMR Spectrosc. 39, 1–40 (2001).
  • Reo NV. NMR-based metabolomics. Drug Chem. Toxicol. 25(4), 375–382 (2002).
  • Roy SM, Anderle M, Lin H, Becker CH. Differential expression profiling of serumproteins and metabolites for biomarker discovery. Int. J. Mass Spectrom. 238, 163–171 (2004).
  • Yang J, Xu G, Zheng Y et al. Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 1084(1–2), 214–221 (2005).
  • Maurer HH. Liquid chromatography–mass spectrometry in forensic and clinical toxicology. J. Chromatogr. B Biomed. Sci. Appl. 713(1), 3–25 (1998).
  • Idborg H, Zamani L, Edlund PO, Schuppe-Koistinen I, Jacobsson SP. Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 828(1–2), 14–20 (2005).
  • Benavente F, van der Heijden R, Tjaden UR, van der Greef J, Hankemeier T. Metabolite profiling of human urine by CE-ESI-MS using separation electrolytes at low pH. Electrophoresis 27(22), 4570–4584 (2006).
  • Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817(1), 67–76 (2005).
  • Toyo’oka T. Determination methods for biologically active compounds by ultra-performance liquid chromatography coupled with mass spectrometry: application to the analyses of pharmaceuticals, foods, plants, environments, metabonomics, and metabolomics. J. Chromatogr. Sci. 46(3), 233–247 (2008).
  • Govorukhina NI, Reijmers TH, Nyangoma SO, van der Zee AG, Jansen RC, Bischoff R. Analysis of human serum by liquid chromatography-mass spectrometry: improved sample preparation and data analysis. J. Chromatogr. A 1120(1–2), 142–150 (2006).
  • Major HJ, Williams R, Wilson AJ, Wilson ID. A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spectrom. 20(22), 3295–3302 (2006).
  • Yuan K, Kong H, Guan Y, Yang J, Xu G. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 850(1–2), 236–240 (2007).
  • Wilson ID, Nicholson JK, Castro-Perez J et al. High resolution ‘ultra performance’ liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res. 4(2), 591–598 (2005).
  • O’Connor D, Mortishire-Smith R. High-throughput bioanalysis with simultaneous acquisition of metabolic route data using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry. Anal. Bioanal. Chem. 385(1), 114–121 (2006).
  • Huffman KM, Shah SH, Stevens RD et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32(9), 1678–1683 (2009).
  • Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58(11), 2429–2443 (2009).
  • Zhao X, Peter A, Fritsche J et al. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am. J. Physiol. Endocrinol. Metab. 296(2), E384–E393 (2009).
  • Ha CY, Kim JY, Paik JK et al. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed Type 2 diabetes. Clin. Endocrinol. (Oxf.) 76(5), 674–682 (2012).
  • Huo T, Cai S, Lu X, Sha Y, Yu M, Li F. Metabonomic study of biochemical changes in the serum of Type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J. Pharm. Biomed. Anal. 49(4), 976–982 (2009).
  • Grundy SM, Cleeman JI, Daniels SR et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr. Opin. Cardiol. 21(1), 1–6 (2006).
  • Galili O, Versari D, Sattler KJ et al. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 292(2), H904–H911 (2007).
  • Wang TJ, Larson MG, Vasan RS et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–453 (2011).
  • Chen L, Liang B, Froese DE et al. Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J. Lipid Res. 38(3), 546–553 (1997).
  • Nelson GJ. The phospholipid composition of plasma in various mammalian species. Lipids 2(4), 323–328 (1967).
  • Kougias P, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Lysophosphatidylcholine and secretory phospholipase A2 in vascular disease: mediators of endothelial dysfunction and atherosclerosis. Med. Sci. Monit. 12(1), RA5–R16 (2006).
  • Ojala PJ, Hermansson M, Tolvanen M et al. Identification of α-1 acid glycoprotein as a lysophospholipid binding protein: a complementary role to albumin in the scavenging of lysophosphatidylcholine. Biochemistry 45(47), 14021–14031 (2006).
  • Koves TR, Li P, An J et al. Peroxisome proliferator-activated receptor-gamma co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem. 280(39), 33588–33598 (2005).
  • Koves TR, Ussher JR, Noland RC et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7(1), 45–56 (2008).
  • Van Hove JL, Zhang W, Kahler SG et al. Mediumchain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by facylcarnitine analysis in blood. Ame. J. Human Genet. 52, 958–966 (1993).
  • Krebs M, Krssak M, Bernroider E et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51(3), 599–605 (2002).
  • Kampus P, Kals J, Ristimäe T et al. Augmentation index and carotid intima-media thickness are differently related to age, C-reactive protein and oxidized low-density lipoprotein. J. Hypertens. 25(4), 819–825 (2007).
  • Byfield FJ, Tikku S, Rothblat GH, Gooch KJ, Levitan I. OxLDL increases endothelial stiffness, force generation, and network formation. J. Lipid Res. 47(4), 715–723 (2006).
  • Brinkley TE, Nicklas BJ, Kanaya AM et al. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: the Health, Aging, and Body Composition Study. Hypertension 53(5), 846–852 (2009).
  • Scuteri A, Orru M, Morrell C et al. Independent and additive effects of cytokine patterns and the metabolic syndrome on arterial aging in the SardiNIA Study. Atherosclerosis 215(2), 459–464 (2011).
  • Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 25(5), 932–943 (2005).
  • Nevedomskaya E, Meissner A, Goraler S et al. Metabolic profiling of accelerated aging ERCC1 d/- mice. J. Proteome Res. 9(7), 3680–3687 (2010).
  • Yan S, Wu B, Lin Z et al. Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium. Mol. Biosyst. 5(10), 1204–1213 (2009).
  • Matsuoka O, Otsuka K, Murakami S et al. Arterial stiffness independently predicts cardiovascular events in an elderly community – Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed. Pharmacother. 59(Suppl. 1), S40–S44 (2005).
  • Laurent S, Boutouyrie P, Asmar R et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37(5), 1236–1241 (2001).
  • Yamashina A, Tomiyama H, Takeda K et al. Validity, reproducibility, and clinical significance of noninvasive brachial–ankle pulse wave velocity measurement. Hypertens. Res. 25(3), 359–364 (2002).
  • Hung CS, Lin JW, Hsu CN et al. Using brachial-ankle pulse wave velocity to associate arterial stiffness with cardiovascular risks. Nutr. Metab. Cardiovasc. Dis. 22, 1–6 (2008).
  • Mosedale DE, Smith DJ, Aitken S et al. Circulating levels of MCP-1 and eotaxin are not associated with presence of atherosclerosis or previous myocardial infarction. Atherosclerosis 183(2), 268–274 (2005).
  • Suhre K, Shin SY, Petersen AK et al.; CARDIoGRAM. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362), 54–60 (2011).
  • Adamski J. Genome-wide association studies with metabolomics. Genome Med. 4(4), 34 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.