395
Views
27
CrossRef citations to date
0
Altmetric
Theme: Vascular Disease - Review

Diagnosis and treatment of severe hypertriglyceridemia

&
Pages 505-514 | Published online: 10 Jan 2014

References

  • Lloret Linares C, Pelletier AL, Czernichow S et al. Acute pancreatitis in a cohort of 129 patients referred for severe hypertriglyceridemia. Pancreas37, 13–12 (2008).
  • Hahn PF. Abolishment of alimentary lipemia following injection of heparin. Science98, 19–20 (1943).
  • Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apoC-II deficiency, and hepatic lipase deficiency. In: The Metabolic & Molecular Bases of Inherited Disease (8th Edition). Scriver CR, Beaudet AL, Sly WS et al. (Eds). McGraw-Hill, NY, USA, 2789–2816 (2001).
  • Lipoprotein Lipase. Johns Hopkins University, Baltimore, MD, USA (2010).
  • Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res.37, 693–707 (1996).
  • Preiss-Landl K, Zimmermann R, Hammerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr. Opin. Lipidol.13, 471–481 (2002).
  • Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res.43, 1997–2006 (2002).
  • Heeren J, Niemeier A, Merkel M, Beisiegel U. Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J. Mol. Med.80, 576–584 (2002).
  • Sattler W, Levak-Frank S, Radner H et al. Muscle-specific overexpression of lipoprotein lipase in transgenic mice results in increased alpha-tocopherol levels in skeletal muscle. Biochem. J.318(Pt 1), 15–19 (1996).
  • Clee SM, Bissada N, Miao F et al. Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. J. Lipid Res.41, 521–531 (2000).
  • Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab.297, E271–E288 (2009).
  • Brunzell JD. Familial lipoprotein lipase deficiency. In: Gene Reviews. Pagon RA, Bird TC, Dolan CR, Stephens K (Eds). University of Washington, Seattle, WA, USA (2009).
  • Burger M, Grutz O. Ober hepatosplenomegale lipoidose mit xanthomatosen veranderungen in haut und schleimhaut. Arch. Dernm. Syph. (Berl.)166, 542–549 (1932).
  • Langlois S, Deeb S, Brunzell JD et al. A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc. Natl Acad. Sci. USA86, 948–952 (1989).
  • Fojo SS, Beg O, Dichek H, Brewer HB Jr. The molecular defects in lipoprotein lipase deficient patients. Eur. J. Epidemiol.8(Suppl. 1), 59–63 (1992).
  • Murthy V, Julien P, Gagne C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther.70, 101–135 (1996).
  • Saika Y, Sakai N, Takahashi M et al. Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis. Eur. J. Clin. Invest.33, 216–222 (2003).
  • Zhang X, Qi R, Xian X et al. Spontaneous atherosclerosis in aged lipoprotein lipase-deficient mice with severe hypertriglyceridemia on a normal chow diet. Circ. Res.102, 250–256 (2008).
  • Sagoo GS, Tatt I, Salanti G et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a huge association review and meta-analysis. Am. J. Epidemiol.168, 1233–1246 (2008).
  • Peterfy M, Ben-Zeev O, Mao HZ et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat. Genet.39, 1483–1487 (2007).
  • Jakel H, Nowak M, Helleboid-Chapman A et al. Is apolipoprotein A5 a novel regulator of triglyceride-rich lipoproteins? Ann. Med.38, 2–10 (2006).
  • Calandra S, Priore OC, Tarugi P, Bertolini S. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr. Opin. Lipidol.17, 122–127 (2006).
  • Pullinger CR, Aouizerat BE, Movsesyan I et al. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian–American patients. J. Lipid Res.49, 1846–1854 (2008).
  • Young SG, Davies BS, Fong LG et al. GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr. Opin. Lipidol.18, 389–396 (2007).
  • Beigneux AP, Franssen R, Bensadoun A et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler. Thromb. Vasc. Biol.29, 956–962 (2009).
  • Doolittle MH, Neher SB, Ben-Zeev O et al. Lipase maturation factor LMF1, membrane topology and interaction with lipase proteins in the endoplasmic reticulum. J. Biol. Chem.284, 33623–33633 (2009).
  • van der Ham RL, Alizadeh DR, Berbee JF et al. Plasma apolipoprotein CI and CIII levels are associated with increased plasma triglyceride levels and decreased fat mass in men with the metabolic syndrome. Diabetes Care32, 184–186 (2009).
  • Chan DC, Chen MM, Ooi EM, Watts GF. An ABC of apolipoprotein C-III: a clinically useful new cardiovascular risk factor? Int. J. Clin. Pract.62, 799–809 (2008).
  • Mann WA, Meyer N, Weber W et al. Apolipoprotein E and lipoprotein lipase co-ordinately enhance binding and uptake of chylomicrons by human hepatocytes. Eur. J. Clin. Invest.25, 880–882 (1995).
  • Willnow TE, Kjolby M, Nykjaer A. Sortilins: new players in lipoprotein metabolism. Curr. Opin. Lipidol.22, 79–85 (2011).
  • Li C. Genetics and regulation of angiopoietin-like proteins 3 and 4. Curr. Opin. Lipidol.17, 152–156 (2006).
  • Romeo S, Yin W, Kozlitina J et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest.119, 70–79 (2009).
  • Miida T, Hirayama S. Impacts of angiopoietin-like proteins on lipoprotein metabolism and cardiovascular events. Curr. Opin. Lipidol.21, 70–75 (2010).
  • Brunzell JD. Clinical practice. Hypertriglyceridemia. N. Engl. J. Med.357, 1009–1017 (2007).
  • Herrera E, Gomez-Coronado D, Lasuncion MA. Lipid metabolism in pregnancy. Biol. Neonate51, 70–77 (1987).
  • Papadakis EP, Sraigianni M, Mikhaildis DP et al. Acute pancreatitis in pregnancy: an overview. Eur. J. Obstet. Gynecol. Reprod. Biol.159(2), 261–266 (2011).
  • Loh JA, Rickels MR, Williams J, Iqbal N. Total parenteral nutrition in management of hyperlipidemic pancreatitis during pregnancy. Endocr. Pract.11, 325–330 (2005).
  • Lennertz A, Parhofer KG, Samtleben W, Bosch T. Therapeutic plasma exchange in patients with chylomicronemia syndrome complicated by acute pancreatitis. Ther. Apher.3, 227–233 (1999).
  • Ma Y, Ooi TC, Liu MS et al. High frequency of mutations in the human lipoprotein lipase gene in pregnancy-induced chylomicronemia: possible association with apolipoprotein E2 isoform. J. Lipid Res.35, 1066–1075 (1994).
  • Wierzbicki AS, Mikhailidis DP, Wray R. Drug treatment of combined hyperlipidemia. Am. J. Cardiovasc. Drugs1, 327–336 (2001).
  • Glick MR, Ryder KW. Analytical systems ranked by freedom from interferences. Clin. Chem.33, 1453–1458 (1987).
  • Twomey PJ, Don-Wauchope AC, McCullough D. Unreliability of triglyceride measurement to predict turbidity induced interference. J. Clin. Pathol.56, 861–862 (2003).
  • Vermeer HJ, Steen G, Naus AJ et al. Correction of patient results for Beckman Coulter LX-20 assays affected by interference due to hemoglobin, bilirubin or lipids: a practical approach. Clin. Chem. Lab. Med.45, 114–119 (2007).
  • Otokozawa S, Ai M, Diffenderfer MR et al. Fasting and postprandial apolipoprotein B-48 levels in healthy, obese, and hyperlipidemic subjects. Metabolism58, 1536–1542 (2009).
  • Jackson KG, Williams CM. Apolipoprotein B-48: comparison of fasting concentrations measured in normolipidaemic individuals using SDS-PAGE, immunoblotting and ELISA. Atherosclerosis176, 207–217 (2004).
  • Jackson RL, McLean LR. Human postheparin plasma lipoprotein lipase and hepatic triglyceride lipase. Methods Enzymol.197, 339–345 (1991).
  • Ikeda Y, Takagi A, Ohkaru Y et al. A sandwich-enzyme immunoassay for the quantification of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma using monoclonal antibodies to the corresponding enzymes. J. Lipid Res.31, 1911–1924 (1990).
  • Kobayashi J, Hashimoto H, Fukamachi I et al. Lipoprotein lipase mass and activity in severe hypertriglyceridemia. Clin. Chim. Acta216, 113–123 (1993).
  • Taskinen MR, Nikkila EA, Huttunen JK, Hilden H. A micromethod for assay of lipoprotein lipase activity in needle biopsy samples of human adipose tissue and skeletal muscle. Clin. Chim. Acta104, 107–117 (1980).
  • Wang J, Cao H, Ban MR et al. Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler. Thromb. Vasc. Biol.27, 2450–2455 (2007).
  • Johansen CT, Wang J, Lanktree MB et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet.42, 684–687 (2010).
  • Wierzbicki AS, Purdon SD, Hardman TC et al. HIV lipodystrophy and its metabolic consequences: implications for clinical practice. Curr. Med. Res. Opin.24, 609–624 (2008).
  • Beaumont V, Berard M, Beaumont JL. A circulating inhibitor of post-heparin plasma lipolysis in the type IV–V hyperlipoproteinemia induced in green lymphoma-bearing hamsters. Adv. Exp. Med. Biol.82, 262–264 (1977).
  • Suryanarayanan S, Wierzbicki AS, Carr R, Ritter JM. Hypertriglyceridaemia and NK cell lymphoma. Int. J. Clin. Pract.57, 921–922 (2003).
  • Rodrigues CE, Bonfa E, Carvalho JF. Review on anti-lipoprotein lipase antibodies. Clin. Chim. Acta411, 1603–1605 (2010).
  • Ashraf AP, Beukelman T, Pruneta-Deloche V et al. Type 1 hyperlipoproteinemia and recurrent acute pancreatitis due to lipoprotein lipase antibody in a young girl with Sjogren’s syndrome. J. Clin. Endocrinol. Metab.96(11), 3302–3307 (2011).
  • Viljoen A, Wierzbicki AS. Potential options to treat hypertriglyceridaemia. Curr. Drug Targets10, 356–362 (2009).
  • Ooi EM, Russell BS, Olson E et al. Apolipoprotein B-100-containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations. Arterioscler. Thromb. Vasc. Biol.32, 459–466 (2012).
  • Williams CM. Dietary interventions affecting chylomicron and chylomicron remnant clearance. Atherosclerosis141(Suppl. 1), S87–S92 (1998).
  • Santamarina-Fojo S, Brewer HB Jr. The familial hyperchylomicronemia syndrome. New insights into underlying genetic defects. JAMA265, 904–908 (1991).
  • Oh da Y, Talukdar S, Bae EJ et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell142, 687–698 (2010).
  • Park KS, Lim JW, Kim H. Inhibitory mechanism of omega-3 fatty acids in pancreatic inflammation and apoptosis. Ann. NY Acad. Sci.1171, 421–427 (2009).
  • Rouis M, Dugi KA, Previato L et al. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler. Thromb. Vasc. Biol.17, 1400–1406 (1997).
  • Harris WS, Connor WE, Alam N, Illingworth DR. Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. J. Lipid Res.29, 1451–1460 (1988).
  • Chang CL, Seo T, Matsuzaki M et al. n-3 fatty acids reduce arterial LDL-cholesterol delivery and arterial lipoprotein lipase levels and lipase distribution. Arterioscler. Thromb. Vasc. Biol.29, 555–561 (2009).
  • Grogan K. Amarin excited as omega-3 drug impresses in Phase III. PharmaTimes60(4), 442–449 (2010).
  • Goldberg AP, Applebaum-Bowden DM, Bierman EL et al. Increase in lipoprotein lipase during clofibrate treatment of hypertriglyceridemia in patients on hemodialysis. N. Engl. J. Med.301, 1073–1076 (1979).
  • Chan DC, Watts GF, Ooi EM et al. Atorvastatin and fenofibrate have comparable effects on VLDL-apolipoprotein C-III kinetics in men with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol.28, 1831–1837 (2008).
  • Al-Shali K, Wang J, Fellows F et al. Successful pregnancy outcome in a patient with severe chylomicronemia due to compound heterozygosity for mutant lipoprotein lipase. Clin. Biochem.35, 125–130 (2002).
  • Wierzbicki AS. Fields of dreams, fields of tears: a perspective on the fibrate trials. Int. J. Clin. Pract.60, 442–449 (2006).
  • Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am. J. Cardiol.101, 20B–26B (2008).
  • Hernandez C, Molusky M, Li Y et al. Regulation of hepatic ApoC3 expression by PGC-1beta mediates hypolipidemic effect of nicotinic acid. Cell Metab.12, 411–419 (2010).
  • Blasiole DA, Davis RA, Attie AD. The physiological and molecular regulation of lipoprotein assembly and secretion. Mol. Biosyst.3, 608–619 (2007).
  • Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci.27, 384–390 (2006).
  • Lai E, Waters MG, Tata JR et al. Effects of a niacin receptor partial agonist, MK-0354, on plasma free fatty acids, lipids, and cutaneous flushing in humans. J. Clin. Lipidol.2, 375–383 (2008).
  • Maccubbin D, Koren MJ, Davidson M et al. Flushing profile of extended-release niacin/laropiprant versus gradually titrated niacin extended-release in patients with dyslipidemia with and without ischemic cardiovascular disease. Am. J. Cardiol.104, 74–81 (2009).
  • Vogt A, Kassner U, Hostalek U, Steinhagen-Thiessen E. Evaluation of the safety and tolerability of prolonged-release nicotinic acid in a usual care setting: the NAUTILUS study. Curr. Med. Res. Opin.22, 417–425 (2006).
  • Carlson LA, Froberg S, Oro L. A case of massive hypertriglyceridemia corrected by nicotinic acid or nicotinamide therapy. Atherosclerosis16, 359–368 (1972).
  • Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am. J. Cardiol.81, 66B–69B (1998).
  • Bakker-Arkema RG, Davidson MH, Goldstein RJ et al. Efficacy and safety of a new HMG–CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA275, 128–133 (1996).
  • Watts GF, Barrett PH, Ji J et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes52, 803–811 (2003).
  • Hogue JC, Lamarche B, Deshaies Y et al. Differential effect of fenofibrate and atorvastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with Type 2 diabetes mellitus with marked hypertriglyceridemia. Metabolism57, 246–254 (2008).
  • Wierzbicki AS, Reynolds TM. Familial hyperchylomicronaemia. Lancet348, 1524–1525 (1996).
  • Wierzbicki AS, Morrell J, Hemsley D et al. The effect of fibrate–statin combination therapy on cardiovascular events: a retrospective cohort analysis. Curr. Med. Res. Opin.26, 2141–2146 (2010).
  • Chappuis B, Braun M, Stettler C et al. Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with Type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes Metab. Res. Rev.23(5), 392–329 (2007).
  • Al Majali K, Cooper MB, Staels B et al. The effect of sensitisation to insulin with pioglitazone on fasting and postprandial lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities in Type 2 diabetic patients. Diabetologia49, 527–537 (2006).
  • Eliasson B, Moller-Goede D, Eeg-Olofsson K et al. Lowering of postprandial lipids in individuals with Type 2 diabetes treated with alogliptin and/or pioglitazone: a randomised double-blind placebo-controlled study. Diabetologia55(4), 915–925 (2012).
  • Heaney AP, Sharer N, Rameh B et al. Prevention of recurrent pancreatitis in familial lipoprotein lipase deficiency with high-dose antioxidant therapy. J. Clin. Endocrinol. Metab.84, 1203–1205 (1999).
  • Wierzbicki AS, Reynolds TM, Crook MA. Usefulness of orlistat in the treatment of severe hypertriglyceridemia. Am. J. Cardiol.89, 229–231 (2002).
  • Wierzbicki AS. Rimonabant: endocannabinoid inhibition for the metabolic syndrome. Int. J. Clin. Pract.60, 1697–1706 (2006).
  • Lazarow PB. Viruses exploiting peroxisomes. Curr. Opin. Microbiol.14, 458–469 (2011).
  • Ma W, Belisle SE, Mosier D et al. 2009 pandemic H1N1 virus causes disease and upregulation of genes related to inflammatory and immune response, cell death and lipid metabolism in pigs. J. Virol.85(22), 11626–11637 (2011).
  • Raal FJ, Santos RD, Blom DJ et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet375, 998–1006 (2010).
  • Akdim F, Stroes ES, Sijbrands EJ et al. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J. Am. Coll. Cardiol.55, 1611–1618 (2010).
  • Straarup EM, Fisker N, Hedtjarn M et al. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and nonhuman primates. Nucleic Acids Res.38, 7100–7111 (2010).
  • Holmberg R, Refai E, Hoog A et al. Lowering apolipoprotein CIII delays onset of Type 1 diabetes. Proc. Natl Acad. Sci. USA108, 10685–10689 (2011).
  • Tran K, Wang Y, DeLong CJ et al. The assembly of very low density lipoproteins in rat hepatoma McA-RH7777 cells is inhibited by phospholipase A2 antagonists. J. Biol. Chem.275, 25023–25030 (2000).
  • Wierzbicki AS, Hardman T, Prince WT. Future challenges for microsomal transport protein inhibitors. Curr. Vasc. Pharmacol.7, 277–286 (2009).
  • Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr.20, 663–697 (2000).
  • Cuchel M, Bloedon LT, Szapary PO et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med.356, 148–156 (2007).
  • Samaha FF, McKenney J, Bloedon LT et al. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med.5, 497–505 (2008).
  • Chandler CE, Wilder DE, Pettini JL et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J. Lipid Res.44, 1887–1901 (2003).
  • Prince WJ, Tong W, Frekany J, Andersen G. SLX-4090: repeat dose treatment with a novel enterocyte specific MTP inhibitor reduces postprandial triglyceride response and lowers LDL-C in healthy volunteers. J. Clin. Lipidol.1(5), 471 (2007) (Abstract 334).
  • Heal DJ, Gosden J, Smith SL. Regulatory challenges for new drugs to treat obesity and comorbid metabolic disorders. Br. J. Clin. Pharmacol.68, 861–874 (2009).
  • Nierman MC, Prinsen BH, Rip J et al. Enhanced conversion of triglyceride-rich lipoproteins and increased low-density lipoprotein removal in LPLS447X carriers. Arterioscler. Thromb. Vasc. Biol.25, 2410–2415 (2005).
  • Rip J, Nierman MC, Sierts JA et al. Gene therapy for lipoprotein lipase deficiency: working toward clinical application. Hum. Gene Ther.16, 1276–1286 (2005).
  • Burnett JR, Hooper AJ. Alipogene tiparvovec, an adeno-associated virus encoding the Ser (447)X variant of the human lipoprotein lipase gene for the treatment of patients with lipoprotein lipase deficiency. Curr. Opin. Mol. Ther.11, 681–691 (2009).
  • Gaudet D, de Wal J, Tremblay K et al. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. Atheroscler. Suppl.11, 55–60 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.