229
Views
21
CrossRef citations to date
0
Altmetric
Theme: Stroke - Review

Advanced neuroimaging in stroke patients: prediction of tissue fate and hemorrhagic transformation

, &
Pages 515-524 | Published online: 10 Jan 2014

References

  • Adams HP Jr, Bendixen BH, Kappelle LJ et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. Trial of Org 10172 in Acute Stroke Treatment (TOAST). Stroke24(1), 35–41 (1993).
  • Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol.6(3), 258–268 (2007).
  • Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet355(9216), 1670–1674 (2000).
  • Merino JG, Warach S. Imaging of acute stroke. Nat. Rev. Neurol.6(10), 560–571 (2010).
  • Wardlaw JM, Mielke O. Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment – systematic review. Radiology235(2), 444–453 (2005).
  • Chalela JA, Kidwell CS, Nentwich LM et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet369(9558), 293–298 (2007).
  • Schellinger PD, Bryan RN, Caplan LR et al. Evidence-based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology75(2), 177–185 (2010).
  • Hjort N, Christensen S, Solling C et al. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann. Neurol.58(3), 462–465 (2005).
  • Inatomi Y, Kimura K, Yonehara T, Fujioka S, Uchino M. DWI abnormalities and clinical characteristics in TIA patients. Neurology62(3), 376–380 (2004).
  • Forster A, Gass A, Kern R et al. Brain imaging in patients with transient ischemic attack: a comparison of computed tomography and magnetic resonance imaging. Eur. Neurol.67(3), 136–141 (2012).
  • Baird AE, Benfield A, Schlaug G et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann. Neurol.41(5), 581–589 (1997).
  • Schwamm LH, Koroshetz WJ, Sorensen AG et al. Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke29(11), 2268–2276 (1998).
  • Lansberg MG, O’Brien MW, Tong DC, Moseley ME, Albers GW. Evolution of cerebral infarct volume assessed by diffusion-weighted magnetic resonance imaging. Arch. Neurol.58(4), 613–617 (2001).
  • Campbell BC, Purushotham A, Christensen S et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J. Cereb. Blood Flow Metab.32(1), 50–56 (2012).
  • Ozsunar Y, Sorensen AG. Diffusion- and perfusion-weighted magnetic resonance imaging in human acute ischemic stroke: technical considerations. Top. Magn. Reson. Imaging11(5), 259–272 (2000).
  • Sanak D, Nosal V, Horak D et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology48(9), 632–639 (2006).
  • Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke40(6), 2046–2054 (2009).
  • Kang DW, Chalela JA, Ezzeddine MA, Warach S. Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch. Neurol.60(12), 1730–1734 (2003).
  • Fiebach JB, Schellinger PD, Gass A et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke35(2), 502–506 (2004).
  • Thijs V, Lemmens R, Schoofs C et al. Microbleeds and the risk of recurrent stroke. Stroke41(9), 2005–2009 (2010).
  • Bokura H, Saika R, Yamaguchi T et al. Microbleeds are associated with subsequent hemorrhagic and ischemic stroke in healthy elderly individuals. Stroke42(7), 1867–1871 (2011).
  • Boulanger JM, Coutts SB, Eliasziw M et al. Cerebral microhemorrhages predict new disabling or fatal strokes in patients with acute ischemic stroke or transient ischemic attack. Stroke37(3), 911–914 (2006).
  • Latchaw RE, Alberts MJ, Lev MH et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke40(11), 3646–3678 (2009).
  • Thomalla G, Rossbach P, Rosenkranz M et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann. Neurol.65(6), 724–732 (2009).
  • Campbell BC, Costello C, Christensen S et al. Fluid-attenuated inversion recovery hyperintensity in acute ischemic stroke may not predict hemorrhagic transformation. Cerebrovasc. Dis.32(4), 401–405 (2011).
  • Leys D, Pruvo JP, Godefroy O, Rondepierre P, Leclerc X. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke23(3), 317–324 (1992).
  • Kim EY, Lee SK, Kim DJ et al. Detection of thrombus in acute ischemic stroke: value of thin-section noncontrast-computed tomography. Stroke36(12), 2745–2747 (2005).
  • Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke42(6), 1775–1777 (2011).
  • Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S. Diagnostic and prognostic value of early MR imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am. J. Neuroradiol.26(3), 618–624 (2005).
  • Lee KY, Latour LL, Luby M, Hsia AW, Merino JG, Warach S. Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke? Neurology72(13), 1134–1139 (2009).
  • Bash S, Villablanca JP, Jahan R et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am. J. Neuroradiol.26(5), 1012–1021 (2005).
  • Tan JC, Dillon WP, Liu S, Adler F, Smith WS, Wintermark M. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann. Neurol.61(6), 533–543 (2007).
  • Lev MH, Farkas J, Rodriguez VR et al. CT angiography in the rapid triage of patients with hyperacute stroke to intra-arterial thrombolysis: accuracy in the detection of large vessel thrombus. J. Comput. Assist. Tomogr.25(4), 520–528 (2001).
  • Miteff F, Levi CR, Bateman GA, Spratt N, Mcelduff P, Parsons MW. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain132(Pt 8), 2231–2238 (2009).
  • Mcverry F, Liebeskind DS, Muir KW. Systematic review of methods for assessing leptomeningeal collateral flow. AJNR Am. J. Neuroradiol. doi:10.3174/ajnr.A2794 (2012) (Epub ahead of print).
  • Debrey SM, Yu H, Lynch JK et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke39(8), 2237–2248 (2008).
  • Alfke K, Jensen U, Pool C et al. Contrast-enhanced magnetic resonance angiography in stroke diagnostics: additional information compared with time-of-flight magnetic resonance angiography? Clin. Neuroradiol.21(1), 5–10 (2011).
  • Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N. Engl. J. Med.344(12), 898–906 (2001).
  • Dani KA, Thomas RG, Chappell FM et al. Computed tomography and magnetic resonance perfusion imaging in ischemic stroke: definitions and thresholds. Ann. Neurol.70(3), 384–401 (2011).
  • Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn. Reson. Imaging Clin. N. Am.17(2), 315–338 (2009).
  • Grandin CB. Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology45(11), 755–766 (2003).
  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn. Reson. Med.14(2), 249–265 (1990).
  • Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G. Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn. Reson. Med.43(4), 559–564 (2000).
  • Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn. Reson. Med.46(6), 1113–1122 (2001).
  • Knutsson L, Stahlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA23(1), 1–21 (2010).
  • Kane I, Carpenter T, Chappell F et al. Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke38(12), 3158–3164 (2007).
  • Christensen S, Mouridsen K, Wu O et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke40(6), 2055–2061 (2009).
  • Schlaug G, Benfield A, Baird AE et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology53(7), 1528–1537 (1999).
  • Jansen O, Schellinger P, Fiebach J, Hacke W, Sartor K. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet353(9169), 2036–2037 (1999).
  • Albers GW, Thijs VN, Wechsler L et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann. Neurol.60(5), 508–517 (2006).
  • Furlan AJ, Eyding D, Albers Gw et al. Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke37(5), 1227–1231 (2006).
  • Hacke W, Albers G, Al-Rawi Y et al. The Desmoteplase in Acute Ischemic Stroke trial (DIAS): a Phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke36(1), 66–73 (2005).
  • Hacke W, Furlan AJ, Al-Rawi Y et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol.8(2), 141–150 (2009).
  • Davis SM, Donnan GA, Parsons MW et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol.7(4), 299–309 (2008).
  • Nagakane Y, Christensen S, Brekenfeld C et al. EPITHET: positive result after reanalysis using baseline diffusion-weighted imaging/perfusion-weighted imaging co-Registration. Stroke42(1), 59–64 (2011).
  • Lansberg MG, Lee J, Christensen S et al. RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Stroke42(6), 1608–1614 (2011).
  • Berger C, Fiorelli M, Steiner T et al. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke32(6), 1330–1335 (2001).
  • Saver JL. Hemorrhage after thrombolytic therapy for stroke: the clinically relevant number needed to harm. Stroke38(8), 2279–2283 (2007).
  • Gumbinger C, Gruschka P, Bottinger M et al. Improved prediction of poor outcome after thrombolysis using conservative definitions of symptomatic hemorrhage. Stroke43(1), 240–242 (2012).
  • Hacke W, Kaste M, Fieschi C et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet352(9136), 1245–1251 (1998).
  • Hacke W, Kaste M, Bluhmki E et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med.359(13), 1317–1329 (2008).
  • No authors listed. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N. Engl. J. Med.333(24), 1581–1587 (1995).
  • Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA282(21), 2019–2026 (1999).
  • Hill MD, Buchan AM. Thrombolysis for acute ischemic stroke: results of the Canadian Alteplase for Stroke Effectiveness Study. CMAJ172(10), 1307–1312 (2005).
  • Shobha N, Buchan AM, Hill MD. Thrombolysis at 3–4.5 hours after acute ischemic stroke onset – evidence from the Canadian Alteplase for Stroke Effectiveness Study (CASES) registry. Cerebrovasc. Dis.31(3), 223–228 (2011).
  • Furlan A, Higashida R, Wechsler L et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA282(21), 2003–2011 (1999).
  • Smith WS, Sung G, Starkman S et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke36(7), 1432–1438 (2005).
  • Smith WS, Sung G, Saver J et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke39(4), 1205–1212 (2008).
  • IMS II Trial Investigators. The Interventional Management of Stroke (IMS) II Study. Stroke38(7), 2127–2135 (2007).
  • Wang X, Lo EH. Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol. Neurobiol.28(3), 229–244 (2003).
  • Kim EY, Na DG, Kim SS, Lee KH, Ryoo JW, Kim HK. Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am. J. Neuroradiol.26(5), 1050–1055 (2005).
  • Merten CL, Knitelius HO, Assheuer J, Bergmann-Kurz B, Hedde JP, Bewermeyer H. MRI of acute cerebral infarcts, increased contrast enhancement with continuous infusion of gadolinium. Neuroradiology41(4), 242–248 (1999).
  • Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood–brain barrier disruption in human focal brain ischemia. Ann. Neurol.56(4), 468–477 (2004).
  • Vo KD, Santiago F, Lin W, Hsu CY, Lee Y, Lee JM. MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR Am. J. Neuroradiol.24(4), 674–679 (2003).
  • Kastrup A, Groschel K, Ringer TM et al. Early disruption of the blood–brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke39(8), 2385–2387 (2008).
  • Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion CT assessment of blood–brain barrier permeability using the Patlak model. AJNR Am. J. Neuroradiol.30(7), 1366–1370 (2009).
  • Aviv RI, D’Esterre CD, Murphy BD et al. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology250(3), 867–877 (2009).
  • Hom J, Dankbaar JW, Soares BP et al. Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am. J. Neuroradiol.32(1), 41–48 (2011).
  • Kassner A, Roberts T, Taylor K, Silver F, Mikulis D. Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am. J. Neuroradiol.26(9), 2213–2217 (2005).
  • Vidarsson L, Thornhill RE, Liu F, Mikulis DJ, Kassner A. Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan? Magn. Reson. Imaging27(9), 1216–1222 (2009).
  • Bang OY, Buck BH, Saver JL et al. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann. Neurol.62(2), 170–176 (2007).
  • Lee M, Hong KS, Saver JL. Efficacy of intra-arterial fibrinolysis for acute ischemic stroke: meta-analysis of randomized controlled trials. Stroke41(5), 932–937 (2010).
  • Mazighi M, Serfaty JM, Labreuche J et al. Comparison of intravenous alteplase with a combined intravenous–endovascular approach in patients with stroke and confirmed arterial occlusion (RECANALISE study): a prospective cohort study. Lancet Neurol.8(9), 802–809 (2009).
  • Soares BP, Tong E, Hom J et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke41(1), e34–e40 (2010).
  • Bang OY, Saver JL, Buck BH et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry79(6), 625–629 (2008).
  • Campbell BC, Christensen S, Butcher KS et al. Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke41(1), 82–88 (2010).
  • von Kummer R, Bourquain H, Bastianello S et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology219(1), 95–100 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.