210
Views
27
CrossRef citations to date
0
Altmetric
Review

Nanomedicine in cardiovascular therapy: recent advancements

, , &
Pages 805-815 | Published online: 10 Jan 2014

References

  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 19(3), 311–330 (2005).
  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine – challenge and perspectives. Angew. Chem. Int. Ed. Engl. 48(5), 872–897 (2009).
  • Gibaud S, Rousseau C, Weingarten C et al. Polyalkylcyanoacrylate nanoparticles as carriers for granulocyte-colony stimulating factor (G-CSF). J. Control. Release 52(1–2), 131–139 (1998).
  • Fattal E, Vauthier C, Aynie I et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Control. Release 53(1–3), 137–143 (1998).
  • Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release 111(1–2), 107–116 (2006).
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377(Pt 1), 159–169 (2004).
  • Decuzzi P, Godin B, Tanaka T et al. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 141(3), 320–327 (2010).
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006).
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006).
  • Muro S, Garnacho C, Champion JA et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16(8), 1450–1458 (2008).
  • Serda RE, Gu J, Bhavane RC et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 30(13), 2440–2448 (2009).
  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9(2), 435–443 (2008).
  • Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 11(8), 1186–1189 (1994).
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev. 51(1–3), 81–96 (2001).
  • Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs – a fiction? Pharm. Sci. Tech. Today 1(9), 370–376 (1998).
  • Borchard G, Luessen HL, de Boer AG et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption 3: effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release 39(2–3), 131–138 (1996).
  • Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16(16), 1211–1216 (1995).
  • Muzzarelli RA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 53(2), 131–140 (1997).
  • Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20(2), 175–182 (1999).
  • Chandy T, Sharma CP. Chitosan – as a biomaterial. Biomater. Artif. Cells. Artif. Organs 18(1), 1–24 (1990).
  • Aspden TJ, Mason JD, Jones NS, Lowe J, Skaugrud O, Illum L. Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J. Pharm. Sci. 86(4), 509–513 (1997).
  • Vila A, Sánchez A, Janes K et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur. J. Pharm. Biopharm. 57(1), 123–131 (2004).
  • Kotzé AF, Luessen HL, de Boer AG, Verhoef JC, Junginger HE. Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur. J. Pharm. Sci. 7(2), 145–151 (1999).
  • Kotzé AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm. Res. 14(9), 1197–1202 (1997).
  • Thanou M, Verhoef JC, Marbach P, Junginger HE. Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci. 89(7), 951–957 (2000).
  • Hamman JH, Stander M, Kotzé AF. Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. Int. J. Pharm. 232(1–2), 235–242 (2002).
  • Dai CY, Wang BC, Zhao HW. Microencapsulation peptide and protein drugs delivery system. Colloids Sur. B-Biointerfaces 41(2–3), 117–120 (2005).
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J. Control. Release 90(3), 261–280 (2003).
  • Holzer M, Vogel V, Mäntele W, Schwartz D, Haase W, Langer K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur. J. Pharm. Biopharm. 72(2), 428–437 (2009).
  • Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma. Cytokine 6(1), 92–101 (1994).
  • Meyer J, Whitcomb L, Collins D. Efficient encapsulation of proteins within liposomes for slow release in vivo. Biochem. Biophys. Res. Commun. 199(2), 433–438 (1994).
  • Fonseca MJ, Alsina MA, Reig F. Coating liposomes with collagen (Mr 50,000) increases uptake into liver. Biochim. Biophys. Acta 1279(2), 259–265 (1996).
  • Fidler IJ, Raz A, Fogler WE, Kirsh R, Bugelski P, Poste G. Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res. 40(12), 4460–4466 (1980).
  • Poste G, Bucana C, Raz A, Bugelski P, Kirsh R, Fidler IJ. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res. 42(4), 1412–1422 (1982).
  • Li SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim. Biophys. Acta 1788(10), 2259–2266 (2009).
  • Desai PR, Jain NJ, Sharma RK, Bahadur P. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Sur. A Physicochem. Eng. Asp. 178(1–3), 57–69 (2001).
  • Firestone MA, Wolf AC, Seifert S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules 4(6), 1539–1549 (2003).
  • Photos PJ, Bacakova L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J. Control. Release 90(3), 323–334 (2003).
  • Gaspard J, Hahn MS, Silas JA. Polymerization of hydrogels inside self-assembled block copolymer vesicles. Langmuir 25(22), 12878–12884 (2009).
  • Gillies ER, Fréchet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10(1), 35–43 (2005).
  • Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol. Pharm. 5(1), 105–116 (2008).
  • Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M. How to study dendriplexes II: transfection and cytotoxicity. J. Control. Release 141(2), 110–127 (2010).
  • Shriver LP, Koudelka KJ, Manchester M. Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J. Neuroimmunol. 211(1–2), 66–72 (2009).
  • Koudelka KJ, Destito G, Plummer EM, Trauger SA, Siuzdak G, Manchester M. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog. 5(5), e1000417 (2009).
  • Higginbotham JN, Seth P, Blaese RM, Ramsey WJ. The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum. Gene Ther. 13(1), 129–141 (2002).
  • Manchester M, Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 58(14), 1505–1522 (2006).
  • Chen W, Vucic E, Leupold E et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol. Imaging 3(6), 233–242 (2008).
  • Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58(14), 1471–1504 (2006).
  • Mukundan S Jr, Ghaghada KB, Badea CT et al. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR. Am. J. Roentgenol. 186(2), 300–307 (2006).
  • Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J. Am. Chem. Soc. 129(24), 7661–7665 (2007).
  • Hyafil F, Cornily JC, Feig JE et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 13(5), 636–641 (2007).
  • Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem. 20(2), 397–401 (2009).
  • Michalet X, Pinaud FF, Bentolila LA et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005).
  • Nahrendorf M, Zhang H, Hembrador S et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117(3), 379–387 (2008).
  • Lanza GM, Winter PM, Caruthers SD et al. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine (Lond.) 1(3), 321–329 (2006).
  • Loo C, Lin A, Hirsch L et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
  • Pan D, Pramanik M, Senpan A et al. Molecular photoacoustic tomography with colloidal nanobeacons. Angew. Chem. Int. Ed. Engl. 48(23), 4170–4173 (2009).
  • Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107(19), 2453–2458 (2003).
  • Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad. Radiol. 10(5), 475–483 (2003).
  • Winter PM, Morawski AM, Caruthers SD et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108(18), 2270–2274 (2003).
  • Lanza GM, Trousil RL, Wallace KD et al. In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J. Acoust. Soc. Am. 104(6), 3665–3672 (1998).
  • Kaufmann BA, Sanders JM, Davis C et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116(3), 276–284 (2007).
  • Sarda-Mantel L, Hervatin F, Michel JB et al. Myocardial uptake of 99mTc-annexin-V and 111In-antimyosin-antibodies after ischemia–reperfusion in rats. Eur. J. Nucl. Med. Mol. Imaging 35(1), 158–165 (2008).
  • McMurray JJ, Pfeffer MA. Heart failure. Lancet 365(9474), 1877–1889 (2005).
  • Flögel U, Ding Z, Hardung H et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118(2), 140–148 (2008).
  • Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 31(5), 199–205 (2010).
  • Misri R, Meier D, Yung AC, Kozlowski P, Häfeli UO. Development and evaluation of a dual-modality (MRI/SPECT) molecular imaging bioprobe. Nanomedicine doi:10.1016/j.nano.2011.10.013 (2011) (Epub ahead of print).
  • Wang TJ, Larson MG, Levy D et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 350(7), 655–663 (2004).
  • Cushman M, Lemaitre RN, Kuller LH et al. Fibrinolytic activation markers predict myocardial infarction in the elderly. The Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 19(3), 493–498 (1999).
  • Mangoni AA, Jackson SH. Homocysteine and cardiovascular disease: current evidence and future prospects. Am. J. Med. 112(7), 556–565 (2002).
  • Danesh J, Lewington S, Thompson SG et al.; Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14), 1799–1809 (2005).
  • Floriano PN, Christodoulides N, Miller CS et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin. Chem. 55(8), 1530–1538 (2009).
  • Thygesen K, Alpert JS, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur. Heart J. 28(20), 2525–2538 (2007).
  • Sobel BE, Bresnahan GF, Shell WE, Yoder RD. Estimation of infarct size in man and its relation to prognosis. Circulation 46(4), 640–648 (1972).
  • Wilson SR, Sabatine MS, Braunwald E, Sloan S, Murphy SA, Morrow DA. Detection of myocardial injury in patients with unstable angina using a novel nanoparticle cardiac troponin I assay: observations from the PROTECT-TIMI 30 Trial. Am. Heart J. 158(3), 386–391 (2009).
  • Hinchey JA, Benesch C. Thrombolytic therapy in patients with acute ischemic stroke. Arch. Neurol. 57(10), 1430–1436 (2000).
  • Marler JR, Brott T, Broderick J et al. Tissue-plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333(24), 1581–1587 (1995).
  • Caplan LR. Stroke thrombolysis: slow progress. Circulation 114(3), 187–190 (2006).
  • Lanza GM, Wallace KD, Scott MJ et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94(12), 3334–3340 (1996).
  • Hua X, Liu P, Gao YH et al. Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J. Thromb. Thrombolysis 30(1), 29–35 (2010).
  • Gui L, Zhao M, Wang Y, Qin Y, Liu J, Peng S. Synthesis, nanofeatures, in vitro thrombus lysis activity and in vivo thrombolytic activity of poly-alpha, beta-aspartyl-l-alanine. Nanomedicine (Lond). 5(5), 703–714 (2010).
  • Jiao Y, Ubrich N, Marchand-Arvier M et al. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 105(2), 230–235 (2002).
  • Goldberg SL, Loussararian A, De Gregorio J, Di Mario C, Albiero R, Colombo A. Predictors of diffuse and aggressive intra-stent restenosis. J. Am. Coll. Cardiol. 37(4), 1019–1025 (2001).
  • Westedt U, Barbu-Tudoran L, Schaper AK, Kalinowski M, Alfke H, Kissel T. Deposition of nanoparticles in the arterial vessel by porous balloon catheters: localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSci 4(4), E41 (2002).
  • Dev V, Eigler N, Fishbein MC et al. Sustained local drug delivery to the arterial wall via biodegradable microspheres. Cathet. Cardiovasc. Diagn. 41(3), 324–332 (1997).
  • Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 3(5), 311–320 (2002).
  • Mousavi SA, Malerød L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem. J. 377(Pt 1), 1–16 (2004).
  • Danenberg HD, Fishbein I, Epstein H et al. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J. Cardiovasc. Pharmacol. 42(5), 671–679 (2003).
  • Cohen-Sacks H, Najajreh Y, Tchaikovski V et al. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther. 9(23), 1607–1616 (2002).
  • Kaneda MM, Caruthers S, Lanza GM, Wickline SA. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann. Biomed. Eng. 37(10), 1922–1933 (2009).
  • Magaraggia M, Visonà A, Furlan A et al. Inactivation of vascular smooth muscle cells photosensitised by liposome-delivered Zn(II)-phthalocyanine. J. Photochem. Photobiol. B, Biol. 82(1), 53–58 (2006).
  • Bhargava B, Reddy NK, Karthikeyan G et al. A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: evaluation in a porcine model. Catheter. Cardiovasc. Interv. 67(5), 698–702 (2006).
  • Uwatoku T, Shimokawa H, Abe K et al. Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ. Res. 92(7), e62–e69 (2003).
  • Banai S, Chorny M, Gertz SD et al. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials 26(4), 451–461 (2005).
  • Chorny M, Fishbein I, Yellen BB et al. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl Acad. Sci. USA 107(18), 8346–8351 (2010).
  • Chorny M, Fishbein I, Forbes S, Alferiev I. Magnetic nanoparticles for targeted vascular delivery. IUBMB Life 63(8), 613–620 (2011).
  • Frimerman A, Welch PJ, Jin X et al. Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. Circulation 99(5), 697–703 (1999).
  • Numaguchi Y, Okumura K, Harada M et al. Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. Cardiovasc. Res. 61(1), 177–185 (2004).
  • Qiao T, Liu CJ, Ran F, Han L, Zhang L, Li L. Experimental study of recombinant eukaryotic expression vector of human eNOS in ECV304. Swiss Med. Wkly 136(1–2), 19–25 (2006).
  • Kawauchi M, Suzuki J, Morishita R et al. Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates. Circ. Res. 87(11), 1063–1068 (2000).
  • Paul A, Binsalamah ZM, Khan AA et al. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 32(32), 8304–8318 (2011).
  • Hedman M, Hartikainen J, Syvänne M et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107(21), 2677–2683 (2003).
  • Colombo A, Hall P, Nakamura S et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91(6), 1676–1688 (1995).
  • Iakovou I, Schmidt T, Bonizzoni E et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293(17), 2126–2130 (2005).
  • Bavry AA, Kumbhani DJ, Helton TJ, Borek PP, Mood GR, Bhatt DL. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am. J. Med. 119(12), 1056–1061 (2006).
  • Wieneke H, Dirsch O, Sawitowski T et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter. Cardiovasc. Interv. 60(3), 399–407 (2003).
  • Bhargava B, Reddy NK, Karthikeyan G et al. A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: evaluation in a porcine model. Catheter. Cardiovasc. Interv. 67(5), 698–702 (2006).
  • Meng J, Kong H, Xu HY, Song L, Wang CY, Xie SS. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. J. Biomed. Mater. Res. A 74(2), 208–214 (2005).
  • Samaroo HD, Lu J, Webster TJ. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int. J. Nanomedicine 3(1), 75–82 (2008).
  • Nakano K, Egashira K, Masuda S et al. Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC Cardiovasc. Interv. 2(4), 277–283 (2009).
  • Al Kindi AH, Asenjo JF, Ge Y et al. Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Eur. J. Cardiothorac. Surg. 39(2), 241–247 (2011).
  • Kajstura J, Rota M, Whang B et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96(1), 127–137 (2005).
  • Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 13(17), 5043–5054 (2005).
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci. 61(19–20), 2549–2559 (2004).
  • Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57(4), 637–651 (2005).
  • Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur. J. Pharm. Biopharm. 58(2), 237–251 (2004).
  • Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J. Control. Release 146(2), 207–211 (2010).
  • Binsalamah ZM, Paul A, Khan AA, Prakash S, Shum-Tim D. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int. J. Nanomedicine 6, 2667–2678 (2011).
  • Davis ME, Hsieh PC, Takahashi T et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA 103(21), 8155–8160 (2006).
  • Formiga FR, Pelacho B, Garbayo E et al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J. Control. Release 147(1), 30–37 (2010).
  • Formiga FR, Pelacho B, Garbayo E et al. Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia–reperfusion model. J. Control. Release 147(1), 30–37 (2010).
  • Paul A, Ge Y, Prakash S, Shum-Tim D. Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy. Regen. Med. 4(5), 733–745 (2009).
  • Paul A, Cantor A, Shum-Tim D, Prakash S. Superior cell delivery features of genipin crosslinked polymeric microcapsules: preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Mol. Biotechnol. 48(2), 116–127 (2011).
  • Paul A, Khan AA, Shum-Tim D, Prakash S. BacMam virus transduced cardiomyoblasts can be used for myocardial transplantation using AP-PEG-A microcapsules: molecular cloning, preparation, and in vitro analysis. J. Biomed. Biotechnol. 2010, 858094 (2010).
  • Iwakura A, Fujita M, Kataoka K et al. Intramyocardial sustained delivery of basic fibroblast growth factor improves angiogenesis and ventricular function in a rat infarct model. Heart Vessels 18(2), 93–99 (2003).
  • Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control. Release 122(3), 349–355 (2007).
  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 4(7), 451–456 (2009).
  • Pham CT, Mitchell LM, Huang JL et al. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J. Biol. Chem. 286(1), 123–130 (2011).
  • Buxton DB, Lee SC, Wickline SA, Ferrari M; National Heart, Lung, and Blood Institute Nanotechnology Working Group. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation 108(22), 2737–2742 (2003).
  • Kolodgie FD, John M, Khurana C et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106(10), 1195–1198 (2002).
  • Kühnl A, Pelisek J, Tian W et al. C-type natriuretic peptide inhibits constrictive remodeling without compromising re-endothelialization in balloon-dilated renal arteries. J. Endovasc. Ther. 12(2), 171–182 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.