362
Views
34
CrossRef citations to date
0
Altmetric
Theme: Hyper- & Hypo-tension - Review

Diabetic cardiovascular autonomic neuropathy: clinical implications

, , , &
Pages 747-765 | Published online: 10 Jan 2014

References

  • Tesfaye S, Boulton AJ, Dyck PJ et al.; Toronto Diabetic Neuropathy Expert Group. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33(10), 2285–2293 (2010).
  • Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 26(5), 1553–1579 (2003).
  • Vinik AI, Erbas T. Recognizing and treating diabetic autonomic neuropathy. Cleve. Clin. J. Med. 68(11), 928–930, 932, 934 (2001).
  • Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation 115(3), 387–397 (2007).
  • Nehlig A, Coles JA. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55(12), 1238–1250 (2007).
  • Verrotti A, Loiacono G, Mohn A, Chiarelli F. New insights in diabetic autonomic neuropathy in children and adolescents. Eur. J. Endocrinol. 161(6), 811–818 (2009).
  • Nishimura C, Lou MF, Kinoshita JH. Depletion of myo-inositol and amino acids in galactosemic neuropathy. J. Neurochem. 49(1), 290–295 (1987).
  • Greene DA, Lattimer SA. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J. Clin. Invest. 72(3), 1058–1063 (1983).
  • Greene DA, Lattimer SA, Sima AA. Are disturbances of sorbitol, phosphoinositide, and Na+-K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes 37(6), 688–693 (1988).
  • Veves A, King GL. Can VEGF reverse diabetic neuropathy in human subjects? J. Clin. Invest. 107(10), 1215–1218 (2001).
  • Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J. 16(1), 123–125 (2002).
  • Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 46(Suppl. 2), S31–S37 (1997).
  • Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 46(Suppl. 2), S38–S42 (1997).
  • Hoeldtke RD, Bryner KD, McNeill DR et al. Nitrosative stress, uric acid, and peripheral nerve function in early Type 1 diabetes. Diabetes 51(9), 2817–2825 (2002).
  • Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA, Pittenger GL. Dermal neurovascular dysfunction in Type 2 diabetes. Diabetes Care 24(8), 1468–1475 (2001).
  • Lukic IK, Humpert PM, Nawroth PP, Bierhaus A. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann. NY Acad. Sci. 1126, 76–80 (2008).
  • Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11), 1973–1988 (2001).
  • Toth C, Rong LL, Yang C et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57(4), 1002–1017 (2008).
  • Purves T, Middlemas A, Agthong S et al. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 15(13), 2508–2514 (2001).
  • Purves TD, Tomlinson DR. Are mitogen-activated protein kinases glucose transducers for diabetic neuropathies? Int. Rev. Neurobiol. 50, 83–114 (2002).
  • Wittmack EK, Rush AM, Hudmon A, Waxman SG, Dib-Hajj SD. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J. Neurosci. 25(28), 6621–6630 (2005).
  • Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52(9), 2363–2371 (2003).
  • Obrosova IG. How does glucose generate oxidative stress in peripheral nerve? Int. Rev. Neurobiol. 50, 3–35 (2002).
  • Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó E, Szabó C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51(2), 514–521 (2002).
  • Obrosova IG, Li F, Abatan OI et al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 53(3), 711–720 (2004).
  • Pittenger GL, Malik RA, Burcus N, Boulton AJ, Vinik AI. Specific fiber deficits in sensorimotor diabetic polyneuropathy correspond to cytotoxicity against neuroblastoma cells of sera from patients with diabetes. Diabetes Care 22(11), 1839–1844 (1999).
  • Sundkvist G, Lind P, Bergström B, Lilja B, Rabinowe SL. Autonomic nerve antibodies and autonomic nerve function in Type 1 and Type 2 diabetic patients. J. Intern. Med. 229(6), 505–510 (1991).
  • Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 634(1), 7–12 (1994).
  • Horrobin DF. Essential fatty acids in the management of impaired nerve function in diabetes. Diabetes 46(Suppl. 2), S90–S93 (1997).
  • Vinik AI, Anandacoomaraswamy D, Ullal J. Antibodies to neuronal structures: innocent bystanders or neurotoxins? Diabetes Care 28(8), 2067–2072 (2005).
  • Brussee V, Cunningham FA, Zochodne DW. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 53(7), 1824–1830 (2004).
  • Toth C, Brussee V, Zochodne DW. Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia 49(5), 1081–1088 (2006).
  • Singhal A, Cheng C, Sun H, Zochodne DW. Near nerve local insulin prevents conduction slowing in experimental diabetes. Brain Res. 763(2), 209–214 (1997).
  • Spallone V, Ziegler D, Freeman R et al. on behalf of the Toronto Consensus Panel on Diabetic Neuropathy*. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 27(7), 639–653 (2011).
  • The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 41, 416–423 (1998).
  • Kennedy WR, Navarro X, Sutherland DE. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology 45(4), 773–780 (1995).
  • Kennedy WR, Navarro X, Goetz FC, Sutherland DE, Najarian JS. Effects of pancreatic transplantation on diabetic neuropathy. N. Engl. J. Med. 322(15), 1031–1037 (1990).
  • Ziegler D, Gries FA, Spüler M, Lessmann F. The epidemiology of diabetic neuropathy. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group. J. Diabetes Complicat. 6(1), 49–57 (1992).
  • Neil HA, Thompson AV, John S, McCarthy ST, Mann JI. Diabetic autonomic neuropathy: the prevalence of impaired heart rate variability in a geographically defined population. Diabet. Med. 6(1), 20–24 (1989).
  • O’Brien IA, O’Hare JP, Lewin IG, Corrall RJ. The prevalence of autonomic neuropathy in insulin-dependent diabetes mellitus: a controlled study based on heart rate variability. Q. J. Med. 61(234), 957–967 (1986).
  • Ziegler D, Gries FA, Mühlen H, Rathmann W, Spüler M, Lessmann F. Prevalence and clinical correlates of cardiovascular autonomic and peripheral diabetic neuropathy in patients attending diabetes centers. The Diacan Multicenter Study Group. Diabete Metab. 19(1 Pt 2), 143–151 (1993).
  • Valensi P, Pariès J, Attali JR; French Group for Research and Study of Diabetic Neuropathy. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications – the French multicenter study. Metab. Clin. Exp. 52(7), 815–820 (2003).
  • Low PA, Benrud-Larson LM, Sletten DM et al. Autonomic symptoms and diabetic neuropathy: a population-based study. Diabetes Care 27(12), 2942–2947 (2004).
  • Pop-Busui R, Low PA, Waberski BH et al.; DCCT/EDIC Research Group. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in Type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 119(22), 2886–2893 (2009).
  • Putz Z, Tabák AG, Tóth N et al. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care 32(1), 181–183 (2009).
  • Stevens MJ, Raffel DM, Allman KC et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 98(10), 961–968 (1998).
  • Sampson MJ, Wilson S, Karagiannis P, Edmonds M, Watkins PJ. Progression of diabetic autonomic neuropathy over a decade in insulin-dependent diabetics. Q. J. Med. 75(278), 635–646 (1990).
  • Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q. J. Med. 49(193), 95–108 (1980).
  • Ko SH, Park SA, Cho JH et al. Progression of cardiovascular autonomic dysfunction in patients with Type 2 diabetes: a 7-year follow-up study. Diabetes Care 31(9), 1832–1836 (2008).
  • Tesfaye S, Chaturvedi N, Eaton SE et al.; EURODIAB Prospective Complications Study Group. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 352(4), 341–350 (2005).
  • Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with Type 2 diabetes mellitus and microalbuminuria: the Steno Type 2 randomised study. Lancet 353(9153), 617–622 (1999).
  • Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with Type 2 diabetes. N. Engl. J. Med. 348(5), 383–393 (2003).
  • Colhoun HM, Francis DP, Rubens MB, Underwood SR, Fuller JH. The association of heart-rate variability with cardiovascular risk factors and coronary artery calcification: a study in Type 1 diabetic patients and the general population. Diabetes Care 24(6), 1108–1114 (2001).
  • Orchard TJ, Olson JC, Erbey JR et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in Type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 26(5), 1374–1379 (2003).
  • Rolim LC, Sá JR, Chacra AR, Dib SA. Diabetic cardiovascular autonomic neuropathy: risk factors, clinical impact and early diagnosis. Arq. Bras. Cardiol. 90(4), e24–e31 (2008).
  • Ziegler D, Zentai C, Perz S et al.; KORA Study Group. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp. Clin. Endocrinol. Diabetes 114(4), 153–159 (2006).
  • Moran A, Palmas W, Field L et al. Cardiovascular autonomic neuropathy is associated with microalbuminuria in older patients with Type 2 diabetes. Diabetes Care 27(4), 972–977 (2004).
  • Witte DR, Tesfaye S, Chaturvedi N, Eaton SE, Kempler P, Fuller JH; EURODIAB Prospective Complications Study Group. Risk factors for cardiac autonomic neuropathy in Type 1 diabetes mellitus. Diabetologia 48(1), 164–171 (2005).
  • Burger AJ, Weinrauch LA, D’Elia JA, Aronson D. Effect of glycemic control on heart rate variability in Type I diabetic patients with cardiac autonomic neuropathy. Am. J. Cardiol. 84(6), 687–691 (1999).
  • Mäkimattila S, Schlenzka A, Mäntysaari M et al. Predictors of abnormal cardiovascular autonomic function measured by frequence domain analysis of heart rate variability and conventional tests in patients with Type 1 diabetes. Diabetes Care 23(11), 1686–1693 (2000).
  • Pop-Busui R. Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care 33(2), 434–441 (2010).
  • Ziegler D. Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes. Metab. Rev. 10(4), 339–383 (1994).
  • Ewing DJ, Clarke BF. Diabetic autonomic neuropathy: present insights and future prospects. Diabetes Care 9(6), 648–665 (1986).
  • Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J. Clin. Endocrinol. Metab. 90(10), 5896–5903 (2005).
  • Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care 9(4), 389–394 (1986).
  • Roy TM, Peterson HR, Snider HL et al. Autonomic influence on cardiovascular performance in diabetic subjects. Am. J. Med. 87(4), 382–388 (1989).
  • Kahn JK, Zola B, Juni JE, Vinik AI. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J. Am. Coll. Cardiol. 7(6), 1303–1309 (1986).
  • Burgos LG, Ebert TJ, Asiddao C et al. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology 70(4), 591–597 (1989).
  • Knüttgen D, Büttner-Belz U, Gernot A, Doehn M. [Unstable blood pressure during anesthesia in diabetic patients with autonomic neuropathy]. Anasth. Intensivther. Notfallmed. 25(4), 256–262 (1990).
  • Latson TW, Ashmore TH, Reinhart DJ, Klein KW, Giesecke AH. Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology 80(2), 326–337 (1994).
  • Kitamura A, Hoshino T, Kon T, Ogawa R. Patients with diabetic neuropathy are at risk of a greater intraoperative reduction in core temperature. Anesthesiology 92(5), 1311–1318 (2000).
  • Sobotka PA, Liss HP, Vinik AI. Impaired hypoxic ventilatory drive in diabetic patients with autonomic neuropathy. J. Clin. Endocrinol. Metab. 62(4), 658–663 (1986).
  • Low PA, Walsh JC, Huang CY, McLeod JG. The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study. Brain 98(3), 341–356 (1975).
  • Page MM, Watkins PJ. Provocation of postural hypotension by insulin in diabetic autonomic neuropathy. Diabetes 25(2), 90–95 (1976).
  • Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8(5), 491–498 (1985).
  • Kempler P, Tesfaye S, Chaturvedi N et al. Blood pressure response to standing in the diagnosis of autonomic neuropathy: the EURODIAB IDDM Complications Study. Arch. Physiol. Biochem. 109(3), 215–222 (2001).
  • Low PA. Prevalence of orthostatic hypotension. Clin. Auton. Res. 18(Suppl. 1), 8–13 (2008).
  • Stewart JM, Medow MS, Montgomery LD. Local vascular responses affecting blood flow in postural tachycardia syndrome. Am. J. Physiol. Heart Circ. Physiol. 285(6), H2749–H2756 (2003).
  • Grubb BP, Kosinski DJ, Boehm K, Kip K. The postural orthostatic tachycardia syndrome: a neurocardiogenic variant identified during head-up tilt table testing. Pacing Clin. Electrophysiol. 20(9 Pt 1), 2205–2212 (1997).
  • Stewart JM, Montgomery LD. Regional blood volume and peripheral blood flow in postural tachycardia syndrome. Am. J. Physiol. Heart Circ. Physiol. 287(3), H1319–H1327 (2004).
  • Rosen SD, Camici PG. The brain–heart axis in the perception of cardiac pain: the elusive link between ischaemia and pain. Ann. Med. 32(5), 350–364 (2000).
  • Wackers FJ, Young LH, Inzucchi SE et al.; Detection of Ischemia in Asymptomatic Diabetics Investigators. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 27(8), 1954–1961 (2004).
  • Margolis JR, Kannel WS, Feinleib M, Dawber TR, McNamara PM. Clinical features of unrecognized myocardial infarction–silent and symptomatic. Eighteen year follow-up: the Framingham study. Am. J. Cardiol. 32(1), 1–7 (1973).
  • Canto JG, Shlipak MG, Rogers WJ et al. Prevalence, clinical characteristics, and mortality among patients with myocardial infarction presenting without chest pain. JAMA 283(24), 3223–3229 (2000).
  • Ambepityia G, Kopelman PG, Ingram D, Swash M, Mills PG, Timmis AD. Exertional myocardial ischemia in diabetes: a quantitative analysis of anginal perceptual threshold and the influence of autonomic function. J. Am. Coll. Cardiol. 15(1), 72–77 (1990).
  • Schönauer M, Thomas A, Morbach S, Niebauer J, Schönauer U, Thiele H. Cardiac autonomic diabetic neuropathy. Diab. Vasc. Dis. Res. 5(4), 336–344 (2008).
  • Mustonen J, Uusitupa M, Länsimies E, Vainio P, Laakso M, Pyörälä K. Autonomic nervous function and its relationship to cardiac performance in middle-aged diabetic patients without clinically evident cardiovascular disease. J. Intern. Med. 232(1), 65–72 (1992).
  • Didangelos TP, Arsos GA, Karamitsos DT, Athyros VG, Karatzas ND. Left ventricular systolic and diastolic function in normotensive Type 1 diabetic patients with or without autonomic neuropathy: a radionuclide ventriculography study. Diabetes Care 26(7), 1955–1960 (2003).
  • Yokoyama I, Ohtake T, Momomura S et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 47(1), 119–124 (1998).
  • Karayannis G, Giamouzis G, Alexandridis E et al. Prevalence of impaired coronary flow reserve and its association with left ventricular diastolic function in asymptomatic individuals with major cardiovascular risk factors. Eur. J. Cardiovasc. Prev. Rehabil. 18(2), 326–333 (2011).
  • Perin PC, Maule S, Quadri R. Sympathetic nervous system, diabetes, and hypertension. Clin. Exp. Hypertens. 23(1–2), 45–55 (2001).
  • Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol. 54(19), 1747–1762 (2009).
  • Triposkiadis F, Giamouzis G, Butler J. The importance of managing diabetes correctly to prevent heart failure. Expert Rev. Cardiovasc. Ther. 9(3), 257–259 (2011).
  • Ejaz A, LoGerfo FW, Pradhan L. Diabetic neuropathy and heart failure: role of neuropeptides. Expert Rev. Mol. Med. 13, e26 (2011).
  • Giamouzis G, Kalogeropoulos A, Georgiopoulou V et al. Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J. Card. Fail. 17(1), 54–75 (2011).
  • Giamouzis G, Butler J. Relationship between heart failure and lipids: the paradigm continues to evolve. J. Card. Fail. 13(4), 254–258 (2007).
  • Pop-Busui R, Kirkwood I, Schmid H et al. Sympathetic dysfunction in Type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J. Am. Coll. Cardiol. 44(12), 2368–2374 (2004).
  • Taskiran M, Rasmussen V, Rasmussen B et al. Left ventricular dysfunction in normotensive Type 1 diabetic patients: the impact of autonomic neuropathy. Diabet. Med. 21(6), 524–530 (2004).
  • Johnson BF, Nesto RW, Pfeifer MA et al. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 27(2), 448–454 (2004).
  • Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101(5), 558–569 (2000).
  • Karamitsos TD, Karvounis HI, Didangelos T, Parcharidis GE, Karamitsos DT. Impact of autonomic neuropathy on left ventricular function in normotensive Type 1 diabetic patients: a tissue Doppler echocardiographic study. Diabetes Care 31(2), 325–327 (2008).
  • Sugiyama T, Kurata C, Tawarahara K, Nakano T. Is abnormal iodine-123-MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J. Nucl. Cardiol. 7(6), 562–568 (2000).
  • Soedamah-Muthu SS, Chaturvedi N, Witte DR, Stevens LK, Porta M, Fuller JH; EURODIAB Prospective Complications Study Group. Relationship between risk factors and mortality in Type 1 diabetic patients in Europe: the EURODIAB Prospective Complications Study (PCS). Diabetes Care 31(7), 1360–1366 (2008).
  • Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26(6), 1895–1901 (2003).
  • Tsuji H, Venditti FJ Jr, Manders ES et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 90(2), 878–883 (1994).
  • Pagani M. Heart rate variability and autonomic diabetic neuropathy. Diabetes Nutr. Metab. 13(6), 341–346 (2000).
  • Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59(4), 256–262 (1987).
  • La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351(9101), 478–484 (1998).
  • Ewing DJ, Campbell IW, Clarke BF. Heart rate changes in diabetes mellitus. Lancet 1(8213), 183–186 (1981).
  • Palatini P, Benetos A, Grassi G et al.; European Society of Hypertension. Identification and management of the hypertensive patient with elevated heart rate: statement of a European Society of Hypertension Consensus Meeting. J. Hypertens. 24(4), 603–610 (2006).
  • Ziegler D, Zentai CP, Perz S et al.; KORA Study Group. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care 31(3), 556–561 (2008).
  • Veglio M, Chinaglia A, Cavallo-Perin P. QT interval, cardiovascular risk factors and risk of death in diabetes. J. Endocrinol. Invest. 27(2), 175–181 (2004).
  • Page MM, Watkins PJ. Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet 1(8054), 14–16 (1978).
  • Spallone V, Maiello MR, Cicconetti E, Menzinger G. Autonomic neuropathy and cardiovascular risk factors in insulin-dependent and non insulin-dependent diabetes. Diabetes Res. Clin. Pract. 34(3), 169–179 (1997).
  • Cohen JA, Jeffers BW, Faldut D, Marcoux M, Schrier RW. Risks for sensorimotor peripheral neuropathy and autonomic neuropathy in non-insulin-dependent diabetes mellitus (NIDDM). Muscle Nerve 21(1), 72–80 (1998).
  • Simonson DC. Etiology and prevalence of hypertension in diabetic patients. Diabetes Care 11(10), 821–827 (1988).
  • Navarro X, Kennedy WR, Sutherland DE. Autonomic neuropathy and survival in diabetes mellitus: effects of pancreas transplantation. Diabetologia 34(Suppl. 1), S108–S112 (1991).
  • O’Brien IA, McFadden JP, Corrall RJ. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q. J. Med. 79(290), 495–502 (1991).
  • Rathmann W, Ziegler D, Jahnke M, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet. Med. 10(9), 820–824 (1993).
  • Kahn JK, Sisson JC, Vinik AI. Prediction of sudden cardiac death in diabetic autonomic neuropathy. J. Nucl. Med. 29(9), 1605–1606 (1988).
  • Miettinen H, Lehto S, Salomaa V et al. Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21(1), 69–75 (1998).
  • Fava S, Azzopardi J, Muscat HA, Fenech FF. Factors that influence outcome in diabetic subjects with myocardial infarction. Diabetes Care 16(12), 1615–1618 (1993).
  • Katz A, Liberty IF, Porath A, Ovsyshcher I, Prystowsky EN. A simple bedside test of 1-minute heart rate variability during deep breathing as a prognostic index after myocardial infarction. Am. Heart J. 138(1 Pt 1), 32–38 (1999).
  • Ewing DJ, Campbell IW, Burt AA, Clarke BF. Vascular reflexes in diabetic autonomic neuropathy. Lancet 2(7842), 1354–1356 (1973).
  • Pfeifer MA, Cook D, Brodsky J et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes 31(4 Pt 1), 339–345 (1982).
  • Boulton AJ, Vinik AI, Arezzo JC et al.; American Diabetes Association. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4), 956–962 (2005).
  • Spallone V, Bellavere F, Scionti L et al.; Diabetic Neuropathy Study Group of the Italian Society of Diabetology. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr. Metab. Cardiovasc. Dis. 21(1), 69–78 (2011).
  • Ziegler D, Laux G, Dannehl K et al. Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet. Med. 9(2), 166–175 (1992).
  • Levitt NS, Stansberry KB, Wynchank S, Vinik AI. The natural progression of autonomic neuropathy and autonomic function tests in a cohort of people with IDDM. Diabetes Care 19(7), 751–754 (1996).
  • Vinik AI, Holland MT, Le Beau JM, Liuzzi FJ, Stansberry KB, Colen LB. Diabetic neuropathies. Diabetes Care 15(12), 1926–1975 (1992).
  • Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Neurology 46, 1470 (1996).
  • Spallone V, Morganti R, Fedele T, D’Amato C, Maiello MR. Reappraisal of the diagnostic role of orthostatic hypotension in diabetes. Clin. Auton. Res. 19(1), 58–64 (2009).
  • Schwartz PJ, Stramba-Badiale M, Segantini A et al. Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338(24), 1709–1714 (1998).
  • de Bruyne MC, Hoes AW, Kors JA, Hofman A, van Bemmel JH, Grobbee DE. Prolonged QT interval predicts cardiac and all-cause mortality in the elderly. The Rotterdam Study. Eur. Heart J. 20(4), 278–284 (1999).
  • Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation 83(6), 1888–1894 (1991).
  • Suys BE, Huybrechts SJ, De Wolf D et al. QTc interval prolongation and QTc dispersion in children and adolescents with Type 1 diabetes. J. Pediatr. 141(1), 59–63 (2002).
  • Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care 33(6), 1389–1394 (2010).
  • Whitsel EA, Boyko EJ, Siscovick DS. Reassessing the role of QTc in the diagnosis of autonomic failure among patients with diabetes: a meta-analysis. Diabetes Care 23(2), 241–247 (2000).
  • Psallas M, Tentolouris N, Cokkinos A, Papadogiannis D, Cokkinos DV, Katsilambros N. QT dispersion: comparison between diabetic and non-diabetic individuals and correlation with cardiac autonomic neuropathy. Hellenic J. Cardiol. 47(5), 255–262 (2006).
  • Voulgari Ch, Tentolouris N, Moyssakis I et al. Spatial QRS-T angle: association with diabetes and left ventricular performance. Eur. J. Clin. Invest. 36(9), 608–613 (2006).
  • Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4), 1826–1831 (1994).
  • Pagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J. Hypertens. 18(12), 1709–1719 (2000).
  • Bernardi L, Spallone V, Stevens M et al.; on behalf of the Toronto Consensus Panel on Diabetic Neuropathy*. Investigation methods for cardiac autonomic function in human research studies. Diabetes Metab. Res. Rev. 27(7), 654–664 (2011).
  • Low PA, Denq JC, Opfer-Gehrking TL, Dyck PJ, O’Brien PC, Slezak JM. Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve 20(12), 1561–1568 (1997).
  • Gelber DA, Pfeifer M, Dawson B, Schumer M. Cardiovascular autonomic nervous system tests: determination of normative values and effect of confounding variables. J. Auton. Nerv. Syst. 62(1–2), 40–44 (1997).
  • Howorka K, Pumprla J, Schabmann A. Optimal parameters of short-term heart rate spectrogram for routine evaluation of diabetic cardiovascular autonomic neuropathy. J. Auton. Nerv. Syst. 69(2–3), 164–172 (1998).
  • Bigger JT Jr, Fleiss JL, Rolnitzky LM, Steinman RC. Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. The CAPS and ESVEM investigators. Am. J. Cardiol. 69(8), 718–723 (1992).
  • Spallone V, Bernardi L, Ricordi L et al. Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy. Diabetes 42(12), 1745–1752 (1993).
  • Mansia G, De Backer G, Dominiczak A et al.; European Society of HypertensionEuropean Society of Cardiology. 2007 ESH-ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 16(3), 135–232 (2007).
  • Spallone V, Maiello MR, Morganti R, Mandica S, Frajese G. Usefulness of ambulatory blood pressure monitoring in predicting the presence of autonomic neuropathy in Type I diabetic patients. J. Hum. Hypertens. 21(5), 381–386 (2007).
  • Raffel DM, Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl. Med. Biol. 28(5), 541–559 (2001).
  • Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metab. Clin. Exp. 48(1), 92–101 (1999).
  • Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 45(6), 801–805 (1996).
  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93, 1043–1065 (1996).
  • La Rovere MT, Pinna GD, Maestri R et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J. Am. Coll. Cardiol. 53(2), 193–199 (2009).
  • Johansson M, Gao SA, Friberg P et al. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J. Hypertens. 25(1), 163–168 (2007).
  • Gerritsen J, Dekker JM, TenVoorde BJ et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 24(10), 1793–1798 (2001).
  • Rosengård-Bärlund M, Bernardi L, Fagerudd J et al.; FinnDiane Study Group. Early autonomic dysfunction in Type 1 diabetes: a reversible disorder? Diabetologia 52(6), 1164–1172 (2009).
  • Frattola A, Parati G, Gamba P et al. Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40(12), 1470–1475 (1997).
  • Weston PJ, James MA, Panerai RB, McNally PG, Potter JF, Thurston H. Evidence of defective cardiovascular regulation in insulin-dependent diabetic patients without clinical autonomic dysfunction. Diabetes Res. Clin. Pract. 42(3), 141–148 (1998).
  • Ziegler D, Laude D, Akila F, Elghozi JL. Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin. Auton. Res. 11(6), 369–376 (2001).
  • Hamner JW, Taylor JA. Automated quantification of sympathetic beat-by-beat activity, independent of signal quality. J. Appl. Physiol. 91(3), 1199–1206 (2001).
  • Bernardi L. Clinical evaluation of arterial baroreflex activity in diabetes. Diabetes Nutr. Metab. 13(6), 331–340 (2000).
  • Huggett RJ, Scott EM, Gilbey SG, Bannister J, Mackintosh AF, Mary DA. Disparity of autonomic control in Type 2 diabetes mellitus. Diabetologia 48(1), 172–179 (2005).
  • Hoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin-dependent diabetes mellitus. J. Diabetes Complicat. 12(6), 307–310 (1998).
  • Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N. Engl. J. Med. 303(8), 436–444 (1980).
  • Goldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G. Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 60(8), 1327–1332 (2003).
  • Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet. Med. 12(4), 296–297 (1995).
  • Kahn R. Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. Autonomic nervous system testing. Diabetes Care 15(8), 1095–1103 (1992).
  • Laederach-Hofmann K, Mussgay L, Winter A, Klinkenberg N, Rüddel H. Early autonomic dysfunction in patients with diabetes mellitus assessed by spectral analysis of heart rate and blood pressure variability. Clin. Physiol. 19(2), 97–106 (1999).
  • Agelink MW, Malessa R, Baumann B et al. Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin. Auton. Res. 11(2), 99–108 (2001).
  • May O, Arildsen H. Long-term predictive power of simple function tests for cardiovascular autonomic neuropathy in diabetes: a population-based study. Acta Diabetol. 48(4), 311–316 (2011).
  • Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45(3), 202–206 (1987).
  • Consensus statement: report and recommendations of the San Antonio conference on diabetic neuropathy. American Diabetes Association American Academy of Neurology. Diabetes Care 11, 592–597 (1988).
  • Bellavere F, Thomaseth K, Cobelli C et al. Evaluation of the vagal–sympathetic interaction in diabetics with autonomic neuropathy through power spectrum density analysis of the heart rate. A critical revision of the natural history of diabetic autonomic neuropathy is possible. Funct. Neurol. 4(2), 177–181 (1989).
  • Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovasc. Res. 34(1), 206–214 (1997).
  • Ikeda T, Iwata K, Tanaka Y. Long-term effect of epalrestat on cardiac autonomic neuropathy in subjects with non-insulin dependent diabetes mellitus. Diabetes Res. Clin. Pract. 43(3), 193–198 (1999).
  • Malfatto G, Facchini M, Bragato R, Branzi G, Sala L, Leonetti G. Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur. Heart J. 17(4), 532–538 (1996).
  • Loimaala A, Huikuri H, Oja P, Pasanen M, Vuori I. Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity. J. Appl. Physiol. 89(5), 1825–1829 (2000).
  • Loimaala A, Huikuri HV, Kööbi T, Rinne M, Nenonen A, Vuori I. Exercise training improves baroreflex sensitivity in Type 2 diabetes. Diabetes 52(7), 1837–1842 (2003).
  • Osztovits J, Horváth T, Littvay L et al. Effects of genetic vs. environmental factors on cardiovascular autonomic function: a twin study. Diabet. Med. 28(10), 1241–1248 (2011).
  • Habib AA, Brannagan TH 3rd. Therapeutic strategies for diabetic neuropathy. Curr. Neurol. Neurosci. Rep. 10(2), 92–100 (2010).
  • Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 53(3), 580–591 (1999).
  • Gabbay KH. Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? Curr. Diab. Rep. 4(6), 405–408 (2004).
  • Bril V, Buchanan RA. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care 29(1), 68–72 (2006).
  • Hotta N, Toyota T, Matsuoka K et al.; SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 24(10), 1776–1782 (2001).
  • Goto Y, Hotta N, Shigeta Y, Sakamoto N, Kikkawa R. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed. Pharmacother. 49(6), 269–277 (1995).
  • Várkonyi T, Kempler P. Diabetic neuropathy: new strategies for treatment. Diabetes. Obes. Metab. 10(2), 99–108 (2008).
  • Tankova T, Koev D, Dakovska L. Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom. J. Intern. Med. 42(2), 457–464 (2004).
  • Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care 20(3), 369–373 (1997).
  • Ziegler D, Reljanovic M, Mehnert H, Gries FA. Alpha-lipoic acid in the treatment of diabetic polyneuropathy in Germany: current evidence from clinical trials. Exp. Clin. Endocrinol. Diabetes 107(7), 421–430 (1999).
  • Manzella D, Barbieri M, Ragno E, Paolisso G. Chronic administration of pharmacologic doses of vitamin E improves the cardiac autonomic nervous system in patients with Type 2 diabetes. Am. J. Clin. Nutr. 73(6), 1052–1057 (2001).
  • Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 142(1), 37–46 (2005).
  • Ermis N, Gullu H, Caliskan M, Unsal A, Kulaksizoglu M, Muderrisoglu H. Gabapentin therapy improves heart rate variability in diabetic patients with peripheral neuropathy. J. Diabetes Complicat. 24(4), 229–233 (2010).
  • Cameron NE, Cotter MA. Diabetes causes an early reduction in autonomic ganglion blood flow in rats. J. Diabetes Complicat. 15(4), 198–202 (2001).
  • Tesfaye S, Harris N, Jakubowski JJ et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia 36(12), 1266–1274 (1993).
  • Kontopoulos AG, Athyros VG, Didangelos TP et al. Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy. Diabetes Care 20(3), 355–361 (1997).
  • Malik RA, Williamson S, Abbott C et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 352(9145), 1978–1981 (1998).
  • Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341(10), 709–717 (1999).
  • Yee KM, Struthers AD. Aldosterone blunts the baroreflex response in man. Clin. Sci. 95(6), 687–692 (1998).
  • Fletcher J, Buch AN, Routledge HC, Chowdhary S, Coote JH, Townend JN. Acute aldosterone antagonism improves cardiac vagal control in humans. J. Am. Coll. Cardiol. 43(7), 1270–1275 (2004).
  • MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc. Res. 35(1), 30–34 (1997).
  • Korkmaz ME, Müderrisoglu H, Uluçam M, Ozin B. Effects of spironolactone on heart rate variability and left ventricular systolic function in severe ischemic heart failure. Am. J. Cardiol. 86(6), 649–653 (2000).
  • Davies JI, Band M, Morris A, Struthers AD. Spironolactone impairs endothelial function and heart rate variability in patients with Type 2 diabetes. Diabetologia 47(10), 1687–1694 (2004).
  • Triposkiadis F, Giamouzis G, Kelepeshis G, Sitafidis G, Skoularigis J, Demopoulos V. Acute hemodynamic effects of moderate doses of nebivolol versus metoprolol in patients with systolic heart failure. Int. J. Clin. Pharmacol. Ther. 45(2), 71–77 (2007).
  • Ebbehøj E, Poulsen PL, Hansen KW, Knudsen ST, Mølgaard H, Mogensen CE. Effects on heart rate variability of metoprolol supplementary to ongoing ACE-inhibitor treatment in Type I diabetic patients with abnormal albuminuria. Diabetologia 45(7), 965–975 (2002).
  • Ohkubo Y, Kishikawa H, Araki E et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res. Clin. Pract. 28(2), 103–117 (1995).
  • Giamouzis G, Triposkiadis F, Butler J. Metformin use in patients with diabetes mellitus and heart failure: friend or foe? J. Card. Fail. 16(3), 207–210 (2010).
  • Duckworth W, Abraira C, Moritz T et al.; VADT Investigators. Glucose control and vascular complications in veterans with Type 2 diabetes. N. Engl. J. Med. 360(2), 129–139 (2009).
  • Gerstein HC, Miller ME, Byington RP et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in Type 2 diabetes. N. Engl. J. Med. 358(24), 2545–2559 (2008).
  • Patel A, MacMahon S, Chalmers J et al.; ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med. 358(24), 2560–2572 (2008).
  • Consensus development conference on the diagnosis of coronary heart disease in people with diabetes: 10–11 February 1998, Miami, Florida. American Diabetes Association. Diabetes Care 21, 1551–1559 (1998).
  • Lièvre MM, Moulin P, Thivolet C et al.; DYNAMIT investigators. Detection of silent myocardial ischemia in asymptomatic patients with diabetes: results of a randomized trial and meta-analysis assessing the effectiveness of systematic screening. Trials 12, 23 (2011).
  • Frye RL, August P, Brooks MM et al.; BARI 2D Study Group. A randomized trial of therapies for Type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360(24), 2503–2515 (2009).
  • Giamouzis G, Agha SA, Ekundayo OJ et al. Incident coronary revascularization and subsequent mortality in chronic heart failure: a propensity-matched study. Int. J. Cardiol. 140(1), 55–59 (2010).
  • Graham I, Atar D, Borch-Johnsen K et al.; European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 28(19), 2375–2414 (2007).
  • Jordan J, Shannon JR, Black BK et al. The pressor response to water drinking in humans: a sympathetic reflex? Circulation 101(5), 504–509 (2000).
  • Vinik AI. Diabetic neuropathy: pathogenesis and therapy. Am. J. Med. 107(2B), 17S–26S (1999).
  • Freeman R. Treatment of orthostatic hypotension. Semin. Neurol. 23(4), 435–442 (2003).
  • Hoeldtke RD, Horvath GG, Bryner KD, Hobbs GR. Treatment of orthostatic hypotension with midodrine and octreotide. J. Clin. Endocrinol. Metab. 83(2), 339–343 (1998).
  • Pop-Busui R, Chey W, Stevens MJ. Severe hypertension induced by the long-acting somatostatin analogue sandostatin LAR in a patient with diabetic autonomic neuropathy. J. Clin. Endocrinol. Metab. 85(3), 943–946 (2000).
  • Singer W, Opfer-Gehrking TL, McPhee BR, Hilz MJ, Bharucha AE, Low PA. Acetylcholinesterase inhibition: a novel approach in the treatment of neurogenic orthostatic hypotension. J. Neurol. Neurosurg. Psychiatr. 74(9), 1294–1298 (2003).
  • Montastruc JL, Pelat M, Verwaerde P et al. Fluoxetine in orthostatic hypotension of Parkinson’s disease: a clinical and experimental pilot study. Fundam. Clin. Pharmacol. 12(4), 398–402 (1998).
  • Brahmbhatt R, Baggaley P, Hockings B. Normalization of blood pressure in a patient with severe orthostatic hypotension and supine hypertension using clonidine. Hypertension 37(6), E24 (2001).
  • Roche E, Enseñat-Waser R, Reig JA, Jones J, León-Quinto T, Soria B. Therapeutic potential of stem cells in diabetes. Handb. Exp. Pharmacol. (174), 147–167 (2006).
  • Chattopadhyay M, Krisky D, Wolfe D, Glorioso JC, Mata M, Fink DJ. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Ther. 12(18), 1377–1384 (2005).
  • Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 7(10), 573–583 (2011).
  • Stevens MJ, Dayanikli F, Raffel DM et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J. Am. Coll. Cardiol. 31, 1575–1584 (1998).
  • Ziegler D, Weise F, Langen KJ et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by [123I]metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia 41(4), 443–451 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.