292
Views
41
CrossRef citations to date
0
Altmetric
Review

Orthopedic coating materials: considerations and applications

, &
Pages 423-430 | Published online: 09 Jan 2014

References

  • Goodman SB, Gomez Barrena E, Takagi M, Konttinen YT. Biocompatibility of total joint replacements: a review. J. Biomed. Mater. Res. A90A(2), 603–618 (2008).
  • Duan K, Wang R. Surface modifications of bone implants through wet chemistry. J. Mater. Chem.16, 2309–2321 (2006).
  • Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J. Bone Joint Surg. Am.87(7), 1487–1497 (2005).
  • Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am.89(4), 780–785 (2007).
  • Long M, Rack HJ. Titanium alloys in total joint replacement – a materials science perspective. Biomaterials19(18), 1621–1639 (1998).
  • Park J, Lakes RS. Metallic and Polymer Implants. Springer, NY, USA (2007).
  • Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R.47(3–4), 49–121 (2004).
  • Kurella A, Dahotre NB. Surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl.20(1), 5–50 (2005).
  • Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium phosphate-based coatings on titanium and its alloys. J. Biomed. Mater. Res. B Appl. Biomater.85(1), 279–299 (2008).
  • Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials27(9), 1728–1734 (2006).
  • Zreiqat H, Howlett CR. Titanium substrata composition influences osteoblastic phenotype: in vitro study. J. Biomed. Mater. Res.47(3), 360–366 (1999).
  • Zreiqat H, Howlett CR, Zannettino A et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res.62(2), 175–184 (2002).
  • Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res.32(3), 409–417 (1996).
  • Lee BH, Do Kim Y, Shin JH, Hwan Lee K. Surface modification by alkali and heat treatments in titanium alloys. J. Biomed. Mater. Res.61(3), 466–473 (2002).
  • Nie X, Leyland A, Matthews A, Jiang JC, Meletis EI. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. J. Biomed. Mater. Res.57(4), 612–618 (2001).
  • Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials25(10), 1755–1761 (2004).
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. (395), 81–98 (2002).
  • Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol.172, 129–191 (1997).
  • Constantz BR, Ison IC, Fulmer MT et al. Skeletal repair by in situ formation of the mineral phase of bone. Science267(5205), 1796–1799 (1995).
  • Stupp SI, Ciegler GW. Organoapatites: materials for artificial bone. I. Synthesis and microstructure. J. Biomed. Mater. Res.26(2), 169–183 (1992).
  • Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl.41(17), 3130–3146 (2002).
  • Barrere F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine1(3), 317–332 (2006).
  • De Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm. Res.25(10), 2357–2369 (2008).
  • Best SM, Porter AE, Thian ES, Huang J. Bioceramics: past, present and for the future. J. Eur. Ceram. Soc.28, 1319–1327 (2008).
  • Darimont GL, Cloots R, Heinen E, Seidel L, Legrand R. In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials23(12), 2569–2575 (2002).
  • Kweh SW, Khor KA, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials23(3), 775–785 (2002).
  • Bauer TW, Geesink RC, Zimmerman R, McMahon JT. Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J. Bone Joint Surg. Am.73(10), 1439–1452 (1991).
  • Collier JP, Surprenant VA, Mayor MB, Wrona M, Jensen RE, Surprenant HP. Loss of hydroxyapatite coating on retrieved, total hip components. J. Arthroplasty8(4), 389–393 (1993).
  • Kim HW, Kim HE, Salih V, Knowles JC. Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses. J. Biomed. Mater. Res. A74(3), 294–305 (2005).
  • Balamurugan A, Rebelo A, Kannan S et al. Characterization and in vivo evaluation of sol-gel derived hydroxyapatite coatings on Ti6Al4V substrates. J. Biomed. Mater. Res. B Appl. Biomater.81(2), 441–447 (2007).
  • Zreiqat H, Roest R, Valenzuela S, Milev A, Ben-Nissam B. Human bone derived cell behavior of sol-gel derived carbonate hydroxyapatite coatings on titanium alloy substrate. Key Eng. Mater.284–286, 541–544 (2005).
  • Zreiqat H, Valenzuela SM, Nissan BB et al. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials26(36), 7579–7586 (2005).
  • Knabe C, Berger G, Gildenhaar R, Klar F, Zreiqat H. The modulation of osteogenesis in vitro by calcium titanium phosphate coatings. Biomaterials25(20), 4911–4919 (2004).
  • Smukler -Moncler S, Daculsi G, Delecrin J, Passuti N, Deudon C. Calcium–metallic-phosphates: a new coating material. Biomat. Tissue Interfaces Adv. Biomater.10, 377–383 (1992).
  • Patel N, Best SM, Bonfield W et al. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J. Mater. Sci. Mater. Med.13(12), 1199–1206 (2002).
  • Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. Magnetron co-sputtered silicon-containing hydroxyapatite thin films – an in vitro study. Biomaterials26(16), 2947–2956 (2005).
  • Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. A new way of incorporating silicon in hydroxyapatite (Si–HA) as thin films. J. Mater. Sci. Mater. Med.16(5), 411–415 (2005).
  • Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. Silicon-substituted hydroxyapatite: the next generation of bioactive coatings. Mater. Sci. Eng. C27(2), 251–256 (2007).
  • Hench LL, Jones JR. Biomaterials, Artificial Organs and Tissue Engineering. Woodhead Publishing Ltd, Cambridge, UK (2005).
  • Lopez-Alvarez M, Solla EL, Gonzalez P et al. Silicon–hydroxyapatite bioactive coatings (Si–HA) from diatomaceous earth and SiO2. Study of adhesion and proliferation of osteoblast-like cells. Tissue Eng. A14(5), 775–775 (2008).
  • Capuccini C, Torricelli P, Sima F et al. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater.4(6), 1885–1893 (2008).
  • Narayanan R, Kim SY, Kwon TY, Kim KH. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. J. Biomed. Mater. Res. A87(4), 1053–1060 (2008).
  • Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine1(2), 169–176 (2006).
  • Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J. Biomed. Mater. Res. A84(1), 265–272 (2008).
  • Hench LL, Splinter RJ, Greenlee TK, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. A2(1), 117–141 (1971).
  • Ohtsuki C, Kokubo T, Takatsuka K, Yamamuro T. Composition dependence of bioactivity of glasses in the system CaO–SiO2–P2O5: its in vitro evaluation. J. Ceram. Soc. Japan99, 357–365 (1991).
  • Cerruti M, Sahai N. Silicate biomaterials for orthopaedic and dental implants. Rev. Mineral Geochem.64(1), 283–313 (2006).
  • Ohura K, Nakamura T, Yamamuro T et al. Bone-bonding ability of P2O5-free CaO.SiO2 glasses. J. Biomed. Mater. Res.25(3), 357–365 (1991).
  • Hamadouche M, Meunier A, Greenspan DC et al. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses. J. Biomed. Mater. Res.54(4), 560–566 (2001).
  • Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J. Biomed. Mater. Res.62(1), 1–13 (2002).
  • Fujishiro Y, Hench LL, Oonishi H. Quantitative rates of in vivo bone generation for BioGlass and hydroxyapatite particles as bone graft substitute. J. Mater. Sci. Mater. Med.8(11), 649–652 (1997).
  • Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM. BioGlass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int.67(4), 321–329 (2000).
  • Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials28(9), 1653–1663 (2007).
  • Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of BioGlass 45S5 dissolution. J. Biomed. Mater. Res.55(2), 151–157 (2001).
  • Bosetti M, Zanardi L, Hench L, Cannas M. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J. Biomed. Mater. Res. A64(1), 189–195 (2003).
  • Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials26(18), 3873–3879 (2005).
  • Jell G, Stevens MM. Gene activation by bioactive glasses. J. Mater. Sci. Mater. Med.17(11), 997–1002 (2006).
  • Lacefield WR, Hench LL. The bonding of BioGlass to a cobalt-chromium surgical implant alloy. Biomaterials7(2), 104–108 (1986).
  • Oliva A, Salerno A, Locardi B et al. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomaterials19(11–12), 1019–1025 (1998).
  • Wheeler DL, Montfort MJ, Mcloughlin SW. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J. Biomed. Mater. Res. A55, 603–612 (2001).
  • Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and BioGlass® particles on Ti-based implants. 1. Processing. Biomaterials21(2), 105–111 (2000).
  • Peddi L, Brow RK, Brown RF. Bioactive borate glass coatings for titanium alloys. J. Mater. Sci. Mater. Med.19(9), 3145–3152 (2008).
  • Radice S, Kern P, Burki G, Michler J, Textor M. Electrophoretic deposition of zirconia-BioGlass composite coatings for biomedical implants. J. Biomed. Mater. Res. A82(2), 436–444 (2007).
  • Thomas MV, Puleo DA, Al-Sabbagh M. Bioactive glass three decades on. J. Long Term Eff. Med. Implants15(6), 585–597 (2005).
  • De Aza PN, Guitian F, De Aza S. Bioactivity of wollostonite ceramics: in vitro evaluation. Scripta Metall. Mater.31, 1001–1005 (1994).
  • De Aza PN, Luklinska ZB, Anseau M, Guitian F, de Aza S. Morphological studies of pseudowollastonite for biomedical application. J. Microsc.182(Pt 1), 24–31 (1996).
  • De Aza PN, Luklinska ZB, Anseau MR, Guitian F, De Aza S. Bioactivity of pseudowollastonite in human saliva. J. Dent.27(2), 107–113 (1999).
  • Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S. Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics: formation of hydroxyapatite in simulated body fluid. J. Biomed. Mater. Res.52(1), 30–39 (2000).
  • Ni S, Chang J, Chou L, Zhai W. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.J. Biomed. Mater. Res. B Appl. Biomater.80(1), 174–183 (2007).
  • Sarmento C, Luklinska ZB, Brown Let al.In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. J. Biomed. Mater. Res. A69(2), 351–358 (2004).
  • De Aza PN, Luklinska ZB, Martinez A, Anseau MR, Guitian F, De Aza S. Morphological and structural study of pseudowollastonite implants in bone. J. Microsc.197(Pt 1), 60–67 (2000).
  • Liu X, Ding C. Phase compositions and microstructure of plasma sprayed wollastonite coating. Surf. Coat. Technol.141, 269–274 (2001).
  • Liu X, Ding C. Characterization of plasma sprayed wollastonite powder and coatings. Surf. Coat. Technol.153, 173–177 (2002).
  • Liu X, Ding C, Wang Z. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials22(14), 2007–2012 (2001).
  • Xue W, Liu X, Zheng X, Ding C. In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials26(17), 3455–3460 (2005).
  • Tsui YC, Doyle C, Clyne TW. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimisation of coating properties. Biomaterials19(22), 2031–2043 (1998).
  • Liu XY, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed. Pharmacother.62(8), 526–529 (2008).
  • Liu X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials23(20), 4065–4077 (2002).
  • Liu X, Ding C. Plasma-sprayed wollastonite 2M/ZrO2 composite coating. Surf. Coat. Tech172, 270–278 (2003).
  • Xie Y, Liu X, Chu PK, Zheng X, Ding C. Bioactive titanium-particle-containing dicalcium silicate coating. Surf. Coat. Technol.200, 1950–1953 (2005).
  • Xie Y, Liu X, Ding C, Chu PK. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating. Mater. Sci. Eng. C25, 509–515 (2005).
  • Xue W, Liu X, Zheng X, Ding C. Plasma-sprayed diopside coatings for biomedical applications. Surf. Coat. Technol.185, 340–345 (2004).
  • Wu C, Ramaswamy Y, Soeparto A, Zreiqat H. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J. Biomed. Mater. Res. A86(2), 402–410 (2008).
  • Ramaswamy Y, Wu C, Dunstan CR et al. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Acta Biomater. DOI: 10.1016/j.actbio.2009.04.028 (2009) (Epub ahead of print).
  • Wu C, Ramaswamy Y, Gale D et al. Novel sphene coatings on Ti–6Al–4V for orthopedic implants using sol-gel method. Acta Biomater.4(3), 569–576 (2008).
  • Wu C, Ramaswamy Y, Liu X, Wang G, Zreiqat H. Plasma-sprayed CaTiSiO5 ceramic coating on Ti–6Al–4V with excellent bonding strength, stability and cellular bioactivity. J. R. Soc. Interface6(31), 159–168 (2009).
  • Bumgardner JD, Wiser R, Elder SH, Jouett R, Yang Y, Ong JL. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed.14(12), 1401–1409 (2003).
  • Bumgardner JD, Wiser R, Gerard PD et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J. Biomater. Sci. Polym. Ed.14(5), 423–438 (2003).
  • Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process – an alternative to plasma spraying. Biomaterials26(3), 327–337 (2005).
  • De Giglio E, Cometa S, Cioffi N, Torsi L, Sabbatini L. Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Anal. Bioanal. Chem.389(7–8), 2055–2063 (2007).
  • Susin C, Qahash M, Hall J, Sennerby L, Wikesjo UM. Histological and biomechanical evaluation of phosphorylcholine-coated titanium implants. J. Clin. Periodontol.35(3), 270–275 (2008).
  • Richter GM, Stampfl U, Stampfl S et al. A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Invest. Radiol.40(4), 210–218 (2005).
  • Lora S, Carenza M, Palma G et al. Biocompatible polyphosphazenes by radiation-induced graft copolymerization and heparinization. Biomaterials12(3), 275–280 (1991).
  • Zeifang F, Grunze M, Delling G et al. Improved osseointegration of PTFEP-coated titanium implants. Med. Sci. Monit.14(2), BR35–BR40 (2008).
  • Helary G, Noirclere F, Mayingi J, Migonney V. A new approach to graft bioactive polymer on titanium implants: improvement of MG 63 cell differentiation onto this coating. Acta Biomater.5(1), 124–133 (2009).
  • Lu X, Wang YB, Liu YR et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques. Mater. Lett.61(18), 3970–3973 (2007).
  • Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater. Charact.58(4), 339–348 (2007).
  • Redepenning J, Venkataraman G, Chen J, Stafford N. Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. J. Biomed. Mater. Res. A66A(2), 411–416 (2003).
  • Hu HB, Lin CJ, Hu R, Leng Y. A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti–6Al–4V alloy surface. Mater. Sci. Eng. C20(1–2), 209–214 (2002).
  • Xiao XF, Liu RF, Tang XL. Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture. J. Mater. Sci. Mater. Med.19(1), 175–182 (2008).
  • Negroiu G, Piticescu RM, Chitanu GC, Mihailescu IN, Zdrentu L, Miroiu M. Biocompatibility evaluation of a novel hydroxyapatite–polymer coating for medical implants (in vitro tests). J. Mater. Sci. Mater. Med.19(4), 1537–1544 (2008).
  • Du C, Schneider GB, Zaharias R et al. Apatite/amelogenin coating on titanium promotes osteogenic gene expression. J. Dent. Res.84(11), 1070–1074 (2005).
  • Lin M, Overgaard S, Glerup H, Soballe K, Bunger C. Transforming growth factor-β1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling. Biomaterials22(3), 189–193 (2001).
  • Liu Y, Hunziker EB, Randall NX, de Groot K, Layrolle P. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials24(1), 65–70 (2003).
  • Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone36(5), 745–757 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.