699
Views
91
CrossRef citations to date
0
Altmetric
Review

Energy sources and their development for application in medical devices

&
Pages 693-709 | Published online: 09 Jan 2014

References

  • Halperin D, Heydt-Benjamin TS, Fu K, Kohno T, Maisel WH. Security and privacy for implantable medical devices. Per. Com.7(1), 30–39 (2008).
  • IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 1–238 (2006).
  • Eom SW, Leea CW, Yuna MS, Sunb YK. The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta52(4), 1592–1595 (2006).
  • Takeuchi ES, Leising RA, Spillman DM et al. Lithium Batteries. In: Lithium batteries for medical applications.686–700 (2003).
  • Pistoia G, Gianfranco P. Batteries for medical and special applications In: Batteries for Portable Devices. Gianfranco P (Ed.). Elsevier Science, Amsterdam, the Netherlands 147–162 (2005).
  • Holmes CF. The lithium/iodine-polyvinylpyridine battery – 35 years of successful clinical use. ECS Transactions6(5), 1–7 (2007).
  • Holmes CF. Electrochemical power sources and the treatment of human illness. ECS Interface12(3), 26–29 (2003).
  • Gan H, Rubino RS, Takeuchi ES. Dual-chemistry cathode system for high-rate pulse applications. J. Power Sourc.146(1–2), 101–106 (2005).
  • Root M. Implantable cardiac rhythm device batteries. J. Cardiovasc. Transl. Res.1(4), 254–257 (2008).
  • Dudney NJ. Thin film micro-batteries. ECS Interface17(3), 44–48 (2008).
  • Nishide H, Oyaizu K. Materials science: toward flexible batteries. Science319(5864), 737–738 (2008).
  • Patil A, Patila V, Shina DW, Choia J-W, Paika D-S Yoon S-J. Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull.43(8–9), 1913–1942 (2008).
  • Albano F, Chung M, Blaauw D, Sylvester D, Wise K, Sastry A. Design of an implantable power supply for an intraocular sensor, using power (power optimization for wireless energy requirements). J. Power Sourc.170(1), 216–224 (2007).
  • Dunn B, Long JW, Rolison DR. Rethinking multifunction in three dimensions for miniaturizing electrical energy storage. ECS Interface17(3), 49–53 (2008).
  • Baggetto L, Niessen RAH, Roozeboom F, Notten PHL. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv. Funct. Mater.18(7), 1057–1066 (2008).
  • Wang Y, Cao G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. J. Adv. Mater.20(12), 2251–2269 (2008).
  • Chan CK, Peng H, Liu G et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.3(1), 31–35 (2008).
  • Esmanski A, Ozin G. Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries. Adv. Funct. Mater.19(12), 1999–2010 (2009).
  • Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature458(7235), 190–193 (2009).
  • Armand M, Tarascon JM. Building better batteries. Nature451(7179), 652–657 (2008).
  • Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev.38(9), 2565–2575 (2009).
  • Jimbo H, Miki N. Gastric-fluid-utilizing micro battery for micro medical devices. Sensor Actuator B Chem.134(1), 219–224 (2008).
  • Heller A. Potentially implantable miniature batteries. Anal. Bioanal. Chem.385(3), 469–473 (2006).
  • Zhao TS. Micro Fuel Cells. Academic Press, CA, USA (2009).
  • Jeffrey DM. Micro-fuel cell power sources. Int. J. Energ. Res.31(6–7), 576–602 (2007).
  • Bullen RA, Arnot TC, Walsh FC. Biofuel cells and their development. Biosens. Bioelectron.21(11), 2015–2045 (2006).
  • Davis F, Higson SPJ. Biofuel cells – recent advances and applications. Biosens. Bioelectron.22(7), 1224–1235 (2007).
  • Logan BE, Hamelers B, Rozendal R et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol.40(17), 5181–5192 (2006).
  • Minteer SD, Liaw BY, Cooney MJ. Enzyme-based biofuel cells. Curr. Opin. Biotechnol.18(3), 228–234 (2007).
  • Kerzenmacher S, Ducree J, Zengerle R, Vonstetten F. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sourc.182(1), 1–17 (2008).
  • Mano N, Mao F, Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc.125(21), 6588–6594 (2003).
  • Kerzenmacher S, Ducrée J, Zengerle R, von Stetten F. An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J. Power Sourc.182(1), 66–75 (2008).
  • Willner I, Yan Y-M, Willner B, Tel-Vered R. Integrated enzyme-based biofuel cells – a review. Fuel Cells9(1), 7–24 (2009).
  • Skarstad PM. Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators. J. Power Sourc.136(2), 263–267 (2004).
  • Zhang Y, Fenga H, Wua X et al. Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energ.34(11), 4889–4899 (2009).
  • Signorelli R, Ku DC, Kassakian JG, Schindall JE. Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc. IEEE97(11), 1837–1847 (2009).
  • Zheng JP. High energy density electrochemical capacitors without consumption of electrolyte. J. Electrochem. Soc.156(7), A500–A505 (2009).
  • Lu W, Qub L, Henrya K, Dai L. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J. Power Sourc.189(2), 1270–1277 (2009).
  • Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat. Mater.7(11), 845–854 (2008).
  • Whalen SA, Apblett CA, Aselage TL. Improving power density and efficiency of miniature radioisotopic thermoelectric generators. J. Power Sourc.180(1), 657–663 (2008).
  • Wacharasindhu T, Kwon JW, Meier DE, Robertson JD. Radioisotope microbattery based on liquid semiconductor. Appl. Phys. Lett.95(1), 014103 (2009).
  • Greatbatch W. Implantable power-sources: a review. J. Med. Eng. Tech.8(2), 56–63 (1984).
  • Snyder GJ. Small thermoelectric generators. ECS Interface (Fall 2008), 54–56 (2008).
  • Leonov V, Torfs T, Fiorini P, Van Hoof C. Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensors J.7(5), 650–656 (2007).
  • Macdonald SG. Biothermal Power Source for Implantable Devices. Biomed Soutions, LLC, NY, USA (2008).
  • Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science321(5895), 1457–1461 (2008).
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat. Mater.7(2), 105–114 (2008).
  • Kishi M, Nemoto H, Hamao T et al. Micro thermoelectric modules and their application to wristwatches as an energy source. Proceedings of: 18th International Conference on Thermoelectrics. Baltimore, MD, USA, 29 August–2 September 1999, 301–307.
  • Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. Per. Com.4(1), 18–27 (2005).
  • Leonov V, Vullers RJM. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy1(6), 62701–62714 (2009).
  • Yang Y, Wei XJ, Jing Liu J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys.40(18), 5790 (2007).
  • Bottner H, Chen G, Venkatasubramanian R. Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bulletin31(3), 211–217 (2006).
  • Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci.2(5), 466–479 (2009).
  • Strasser M, Aignera R, Franoscha M, Wachutkab G. Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sensor Actuat. A Phys.97–98, 535–542 (2002).
  • Snyder GJ. Thermoelectric energy harvesting. In: Energy Harvesting Technologies. Priya S, Inman D (Eds). Springer, NY, USA, 325–336 (2009).
  • Romero E, Warrington RO, Neuman MR. Energy scavenging sources for biomedical sensors. Physiol. Meas.30(9), R35–R62 (2009).
  • Beeby SP, O’Donnell T. Electromagnetic energy harvesting. In: Energy Harvesting Technologies. Priya S, Inman D (Eds). Springer, NY, USA, 129–161 (2009).
  • Kim H, Tadesse Y, Priya S. Piezoelectric energy harvesting. In: Energy Harvesting Technologies Priya S, Inman D (Eds). Springer, NY, USA 3–39 (2009).
  • Mitcheson PD, Sterken T, He C, Kiziroglou M, Yeatman EM, Puers R. Electrostatic microgenerators. Meas. Contr.41(4), 114–119 (2008).
  • Davino D, Giustiniani A, Visone C. Analysis of a magnetostrictive power harvesting device with hysteretic characteristics. Proceedings of: The 53RD Annual Conference on Magnetism and Magnetic Materials. 2009. AIP, Austin, TX, USA.
  • Wang L, Yuan FG. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct.17(4) (2008).
  • Challa VR, Prasad MG, Fisher FT et al. A coupled piezoelectric/electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct.18(9), 095029 (2009).
  • Goto H, Sugiura T, Harada Y, Kazui T. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput.37(3), 377–380 (1999).
  • Kymissis J, Kendail C, Paradisco J et al. Parasitic power harvesting in shoes. Proceedings of: Second International Conference on Wearable Computing. Pittsburge, PA, USA, 19–20 October 1998, 132–139 (1998).
  • Shenck NS, Paradiso JA. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro21(3), 30–42 (2001).
  • Li QG, Naing V, Donelan JM. Development of a biomechanical energy harvester. J. Neuroeng. Rehabil.6, 22 (2009).
  • Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science319(5864), 807–810 (2008).
  • Lewandowski BE, Kilgore KL, Gustafson KJ. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann. Biomed. Eng.35(4), 631–641 (2007).
  • Lewandowski BE, Kilgore KL, Gustafson KJ. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype. Ann. Biomed. Eng.37(11), 2390–2401 (2009).
  • Clark WW, Mo C. Piezoelectric energy harvesting for bio mems applications. In: Energy Harvesting Technologies. Priya S, Inman D (Eds). Springer, NY, USA. 405–430 (2009).
  • Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science312(5771), 242–246 (2006).
  • Yang R, Qin Y, Li C, Zhu G, Wang ZL. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett.9(3), 1201–1205 (2009).
  • Mitcheson PD, Yeatman EM, Kondala Rao G, Holmes AS, Green TC. Energy harvesting from human and machine motion for wireless electronic devices. Proc. of IEEE96(9), 1457–1486 (2008).
  • Hudak NS, Amatucci GG. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Phys.103(10), 101301–101301-24 (2008).
  • Jarvik R, Westaby S, Katsumata T, Pigott D, Evans RD. LVAD power delivery: a percutaneous approach to avoid infection. Ann. Thorac. Surg.65(2), 470–473 (1998).
  • Pae WE, Connell JM, Adelowo A et al. Does total implantability reduce infection with the use of a left ventricular assist device? The LionHeart experience in Europe. J. Heart Lung Transplant.26(3), 219–229 (2007).
  • Lenaerts B, Puers R. Omnidirectional Inductive Powering for Biomedical Implants. Springer, the Netherlands (2009).
  • Miura H, Arai S, Kakubari Y, Sato F, Matsuki H, Sato T. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts. IEEE Trans. Magn.42(10), 3578–3580 (2006).
  • Okamoto E, Yamamoto Y, Akasaka Y, Motomura T, Mitamura Y, Nosé Y. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device. Artif. Organs33(8), 622–626 (2009).
  • Ghahary A, Cho BO. Design of transcutaneous energy transmission system using a series resonant converter. IEEE Trans. Power Electron.7(2), 261–269 (1992).
  • Kendir GA, Liu W, Wong G et al. An optimal design methodology for inductive power link with Class-E amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers52(5), 857–866 (2005).
  • Wang G, Liu W, Sivaprakasam M et al. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circuits Syst. I Regul. Pap.52(10), 2109–2117 (2005).
  • Baker MW, Sarpeshkar R. Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circuits Syst.1(1), 28–38 (2007).
  • David CN, Bai S, Yang J, Tran N, Skafidas E. Wireless technologies for closed-loop retinal prostheses. J. Neural Eng.6(6), 065004 (2009).
  • Si P, Hu AP, Malpas S, Budgett D. A frequency control method for regulating wireless power to implantable devices. IEEE Trans. Biomed. Circuits Syst.2(1), 22–29 (2008).
  • Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M. Wireless power transfer via strongly coupled magnetic resonances. Science317(5834), 83–86 (2007).
  • Guanying M, Guozheng Y, Xiu H. Power transmission for gastrointestinal microsystems using inductive coupling. Physiol. Meas.28(3) (2007).
  • Carta R, Tortora G, Thoné J, et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens. Bioelectron.25(4), 845–851 (2009).
  • Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature442(7104), 759–765 (2006).
  • Bian L, Wen Y, Li P, Gao Q. Magnetoelectric transducer offerromagnetic alloy constant elasticity and piezoelectric ceramic for power transmission. Proceedings of: The IEEE Ultrasonics Symposium 2008. Beijing, China, 2–5 November 2008, 1042–1045.
  • Suzuki SN, Katane T, Saotome H, Saito O. A proposal of electric power generating system for implanted medical devices. IEEE Trans. Magn.35(5 Pt 2), 3586–3588 (1999).
  • Goto K, Nakagawa T, Nakamura O, Kawata S. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng.48(7), 830–833 (2001).
  • Carlos A, Rafael P. Recharging the battery of implantable biomedical devices by light. Artif. Organs33(10), 855–860 (2009).
  • Shigeta Y, Yamamoto T, Fujimori K, Sanagi M, Nogi S, Tsukagoshi T. Development of ultrasonic wireless power transmission system for implantable electronic devices. Proceedings of: The Wireless Technology Conference, 2009. European. Rome, Italy, 28–29 September 2009, 49–52.
  • Suzuki SN, Katane T, Saito O. Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy. J. Artif. Organs6(2), 145–148 (2003).
  • Wang X, Song J, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science316(5821), 102–105 (2007).
  • Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic power and data link for wireless implantable applications. Proceedings of: 2007 2nd International Symposium on Wireless Pervasive Computing. San Juan, Puerto Rico, 5–7 February, 567–571 (2007).
  • Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta45(15–16), 2483–2498 (2000).
  • Arnold DP. Review of microscale magnetic power generation. IEEE Trans. Magn.43, 3940–3951 (2007).
  • Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Comm.26, 1131–1144 (2003).
  • Suzuki SN, Katane T, Saotome H, Saito O. Electric power-generating system using magnetic coupling for deeply implanted medical electronic devices. IEEE Trans. Magn.38, 3006–3008 (2002).
  • Budinger TF. Biomonitoring with wireless communications. Annu. Rev. Biomed. Eng.5, 383–412 (2003).
  • Sarpeshkar R, Salthouse C, Sit J-J et al. An ultra-low-power programmable analog bionic ear processor. IEEE Trans. Biomed. Eng.52, 711 (2005).
  • Neuteboom H, Kup BMJ, Janssens M. A DSP based hearing instrument IC. IEEE J. Solid State Circ.32, 1790 (1997).
  • Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu. Rev. Biomed. Eng.7, 361–401 (2005).
  • Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE92, 76 (2004).
  • Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in spinal cord injury. Med. Eng. Phys.23, 19-28 (2001).
  • Yamamoto T et al. Transcutaneous energy transmission system for a totally-implantable artificial heart in case using external battery. IfMBE Proceedings14(19), 3151–3154 (2007).
  • Cook-Chennault KA, Thambi N, Sastry AM. Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct.17, 043001 (2008).
  • Mathúna CO, O’Donnell T, Martinez-Catala RV, Rohan J, O’Flynn B. Energy scavenging for long-term deployable wireless sensor networks. Talanta75, 613–623 (2008).
  • Mitcheson PD, Green TC, Yeatman EM, Holmes AS. Architectures for vibration-driven micropower generators. J. Microelectromech. Syst.13, 429–440 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.