3,596
Views
1,045
CrossRef citations to date
0
Altmetric
Review

Design properties of hydrogel tissue-engineering scaffolds

&
Pages 607-626 | Published online: 09 Jan 2014

References

  • Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials28(34), 5185–5192 (2007).
  • Lutolf MP. Biomaterials: Spotlight on hydrogels. Nat. Mater.8(6), 451–453 (2009).
  • Chung HK, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today4(5), 429–437 (2009).
  • Oh JK. Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Can. J. Chem.88(3), 173–184 (2010).
  • Ulijn RV, Bibi N, Jayawarna V et al. Bioresponsive hydrogels. Mater. Today10(4), 40–48 (2007).
  • Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue. Eng. Part B14(1), 61–86 (2008)
  • Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials31(17), 4639–4656 (2010).
  • Geckil H, Xu F, Zhang XH, Moon S, Demirici U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine5(3), 469–484 (2010).
  • Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett.32(6), 733–742 (2010).
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials24(24), 4337–4351 (2003).
  • Liu SQ, Tay R, Khan M, Ee PLR, Hedrick JL, Yang YY. Synthetic hydrogels for controlled stem cell differentiation. Soft Matter6(1), 67–81 (2010).
  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv. Mater.21(32–33), 3307–3329 (2009).
  • Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev.14(2), 149–165 (2008).
  • Cushing MC, Anseth KS. Hydrogel cell culture. Science316(5828), 1133–1134 (2007).
  • Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci.33(2), 167–170 (2008).
  • Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials28(2), 134–146 (2007).
  • Varghese S, Elisseeff JH. Hydrogels for musculoskeletal tissue engineering. Adv. Polym. Sci.203, 95–144 (2006).
  • Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials3, 1746–1767 (2010).
  • Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Deliver. Rev.59(4–5), 263–273 (2007).
  • Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng.13(10), 2369–2385 (2007).
  • Nguyen TK, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials23(22), 4307–4314 (2002).
  • Hoffman AS. Hydrogels for biomedical applications. Adv. Drug Deliver. Rev.43(1), 3–12 (2002).
  • Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliver. Rev.58(12–13), 1379–1408 (2006).
  • Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng.2, 9–29 (2000).
  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: From Molecular principles to bionanotechnology. Adv. Mater.18(11), 1345–1360 (2006).
  • Deiber JA, Ottone ML, Piaggio MV, Peirotti MB. Characterization of cross-linked polyampholytic gelatin hydrogels through the rubber elasticity and thermodynamic theories. Polymer50(25), 6065–6075 (2009).
  • Freudenberg U, Herman A, Welzel PB et al. A star-PEG-heaprin hydrogel platform to aid cell replacement therapies for neurodegeneration diseases. Biomaterials30(28), 5049–5060 (2009).
  • Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers89(5), 338–344 (2007).
  • Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials30(20), 3371–3377 (2009).
  • Kimelman-Bleich N, Pelled G, Sheyn D et al. The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. Biomaterials30(27), 4639–4648 (2009).
  • Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials27(36), 6064–6082 (2006).
  • Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials28(30), 4378–4398 (2007).
  • Mol A, van Lieshout MI, Dam-de Veen CG et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials26(16), 3113–3121 (2005).
  • Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials29(30), 4091–4099 (2008).
  • Yan H, Saiani A, Gough JE, Miller AF. Thermoreversible protein hydrogel as cell scaffold. Biomacromolecules7(10), 2776–2782 (2006).
  • Yan H, Frielinghaus H, Nykanen A, Ruokolainen J, SaianiA, Miller AF. Thermoreversible lysozyme hydrogels: properties and an insight into the gelation pathway. Soft Matter4(6), 1313–1325 (2008).
  • Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol.15(5), 378–386 (2005).
  • Morritt AN, Bortolotto SK, Dilley RJ et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation115(3), 353–360 (2007).
  • Ponce ML. Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol. Biol.467, 183–188 (2009).
  • Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristic. Nat. Mater.4(4), 298–302 (2005).
  • Sengupta D, Heilshorn S. Protein-engineered biomaterials: Highly tunable tissue engineering scaffolds. Tissue Eng. Part B16(3), 285–293 (2010).
  • Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA105(52), 22067–22072 (2009).
  • MacEwan SR, Chilkoti A. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Pept. Sci.94(1), 60–77 (2010).
  • Romano NH, Sengupta D, Chung C, Heilshorn SC. Protein-engineering biomaterials: nanoscale mimcs of the extracellular matrix. Bioichim. Biophy. Acta1810(3), 339–349 (2011).
  • Dinerman AA, Cappello J, Ghandehari H, Hoag SW. Swelling behavior of a genetically engineered silk-elastin like protein polymer hydrogel. Biomaterials23(21), 4203–4210 (2002).
  • Greish K, Araki K, Li D et al. Silk-elastin like protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors. Biomacromolecules10(10), 2183–2188 (2009).
  • Davis NE, Ding S, Forster RE, Pinkas DM, Barron AE. Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials31(28), 7288–7297 (2010).
  • Banta S, Wheeldon IR, Blenner M. Protein engineering in the development of functional hydrogels. Annu. Rev. Biomed. Eng.12, 167–186 (2010).
  • Kaufmann D, Fiedler A, Junger A, Auernheimer J, Kessler H, Weberskirch R. Chemical conjugation of linear and cyclic RGD moieties to a recombinant elastin-mimetic polypeptide – a versatile approach towards bioactive protein hydrogels. Macromol. Biosci.8(6), 577–588 (2008).
  • Leach JB, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng.82(5), 578–589 (2003).
  • Ramamurthi A, Vesely I. Ultraviolet light-induced modification of crosslinked hyaluronan gels. J. Biomed. Mater. Res. A66(2), 317–329 (2003).
  • Denizli BK, Can HK, Rzaev ZMO, Guner A. Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinked agents. Polymer45(19), 6431–6435 (2004).
  • Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part I. Structure, gelation rate and mechanical properties. Biomaterials22(6), 511–521 (2001).
  • Kim IY, Seo SJ, Moon HS et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv.26(1), 1–21 (2008).
  • Liang Y, Liu W, Han B et al. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Coll. Surf. B82(1), 1–7 (2011).
  • Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater.6(10), 3957–3968 (2010).
  • Stabenfeldt SE, Garcia AJ, LaPlaca MC. Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J. Biomed. Mater. Res. A77(4), 718–725 (2006).
  • Shikanov A, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials30(29), 5476–5485 (2009).
  • Sakai S, Hashimoto I, Kawakami K. Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold. J. Biosci. Bioeng.103(10), 22–26 (2007).
  • Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials26(36), 7616–7627 (2005).
  • Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication and characterization of chitosan-gelatin blend nanofiber for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater.94(1), 264–272 (2010).
  • Tan H, Wu J, Lao L, Gao C. Gelatin/chitosan/hyaluronan scaffold intergrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater.5(1), 328–337 (2009).
  • Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J. Biomed. Mater. Res. A91(2), 447–453 (2009).
  • Liu Y, Chan-Park MB. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials30(2), 196–207 (2009).
  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater.5(10), 797–801 (2006).
  • Xing Y, Cheng E, Yang Y et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater.23(9), 1117–1121 (2011).
  • Lee CK, Shin SR, Lee SH et al. DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed.47(13), 2470–2474 (2008).
  • Park N, Kahn J, Rice EJ et al. High-yield cell-free protein production from P-gel. Nat. Proto.4(12), 1759–1770 (2009).
  • Park N, Um SH, Funabashi H, Xu J, Luo D. A cell-free protein-production gel. Nat. Mater.8(5), 432–437 (2009).
  • Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. The effect of hydrogel charge density on cell attachment. Biomaterials25(15), 3023–3028 (2004).
  • Hejcl A, Sedy J, Kapcalova M et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Delvelop.19(10), 1535–1546 (2010).
  • Woerly S, Pinet E, de Robertis P, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptide (NeuroGel™). Biomaterials22(10), 1095–1111 (2001).
  • Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Nat. Biotechnol.8(9), 854–856 (1990).
  • Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials26(16), 3055–3064 (2005).
  • Park KH. Improved long-term culture of hepatocytes in a hydrogel containing Arg-Gly-Asp (RGD). Biotechnol. Lett.24(14), 1131–1135 (2002).
  • Buxton AN, Zhu J, Marchant RE, West JL, Yoo JU, Johnstone B. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Eng.13(10), 2549–2560 (2007).
  • Beamish JA, Zhu J, Kottke-Marchant K, Marchant RE. The effects of monoacrylate poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. A92(2), 441–450 (2010).
  • Yang F, Williams CG, Wang D, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials26(30), 5991–5998 (2005).
  • Higuchi A, Aoki N, Yamamoto T et al. Temperature-induced cell deattachment on immobilized pluronic surface. J. Biomed. Mater. Res. A79(2), 380–392 (2006).
  • Schmedlen RH, Masters KS, West JL. Photocrosslinked polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials23(22), 4325–4332 (2002).
  • Ossipov DA, Brannvall K, Forsberg-Nilsson K, Hilborn J. Formation of the first injectable poly(vinyl alcohol) hydrogel by mixing of functional PVA precursors. J. Appl. Polym. Sci.106(1), 60–70 (2007).
  • Sawhney AS, Pathak CP, Hubbell JA. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules26(4), 581–587 (1993).
  • Jiang Z, Hao J, You Y, Liu Y, Wang Z, Deng X. Biodegradable and thermosensitive hydrogels of poly(ethylene glycol)-poly(ε-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. J. Biomed. Mater. Res. A87(1), 45–51 (2008).
  • Clapper JD, Skeie JM, Mullins RF, Guymon A. Development and characterization of photopolymerizable biodegradable materials from PEG–PLA–PEG block macromonomers. Polymer48(22), 6554–6564 (2007).
  • Sanabria-DeLong N, Agrawal SK, Bhatia SR, Tew GN. Impact of synthetic technique on PLA–PEO–PLA physical hydrogel properties. Macromolecules40(22), 7864–7873 (2007).
  • Hudalla GA, Eng TS, Murphy WL. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks. Biomacromolecules9(3), 842–849 (2008).
  • Rydholm AE, Anseth KS, Bowman CN. Effects of neighboring sulfides and pH on ester hydrolysis in thiol-acrylate photopolymers. Acta Biomater.3(4), 449–455 (2007).
  • Zhang J, Skardal A, Prestwich GD. Engineered extracellular matrices with cleavable crosslinkers for cell expansion and easy cell recovery. Biomaterials29(34), 4521–4531 (2008).
  • Deshmukh M, Singh Y, Gunaseelan S, Gao D, Stein S, Sinko PJ. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials.31(26), 6675–6684 (2010).
  • Zustiak SP, Leach JB. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules11(5), 1348–1357 (2010).
  • Li Q, Wang J, Shahani S et al. Biodegradable and photocrosslinkable poly(phophoester hydrogel. Biomaterials27(7), 1027–1034 (2006).
  • Haihara S, Matsumura S, Fisher JP. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur. J. Pharm. Biopharm.68(1), 67–73 (2008).
  • Malkoch M, Vestberg R, Gupta N et al. Synthesis of well-defined hydrogel networks using Click chemistry. Chem. Commun.26, 2774–2776 (2006).
  • Jo S, Engel PS, Mikos AG. Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer41(21), 7595–7604 (2000).
  • He X, Ma J, Jabbari E. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic diffierentiation of marrow stromal cells. Langmuir24(21), 12508–12516 (2008).
  • Atzet S, Curtin S, Trinh P, Bryant S, Ratner B. Degradation poly(2-hydroxyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules9(12), 3370–3377 (2008).
  • Hauser CAE, Zhang S. Designer self-assembling peptides nanofiber biological materials. Chem. Soc. Rev.39, 2780–2790 (2010).
  • Zhao X, Zhang S. Designer self-assembling peptide materials. Macromol. Biosci.7(1), 13–22 (2007).
  • Stupp SI. Self-assembly and biomaterials. Nano Lett.10(12), 4783–4786 (2010).
  • Capito RM, Azevedo HS, Velichko YS, Mata A, Stupp SI. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science319(5871), 1812–1816 (2008).
  • Ulijin RV, Smith AM. Designing peptide based nanomaterials. Chem. Soc. Rev.37, 664–675 (2008).
  • Jayawarna V, Richardson SM, Hirst AR et al. Introducing chemical functionality into Fmoc-peptide gels for cell culture. Acta Biomater.5(3), 934–943 (2009).
  • Galler KM, Aulisa L, Regan KR, D’Souza RN, Hartgerink JD. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc.132(9), 3217–3223 (2010).
  • Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng. A16(2), 465–477 (2010).
  • Anderson JM, Andukuri A, Lim DJ, Jun HW. Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano3(10), 3447–3454 (2009).
  • Liu J, Song H, Zhang L, Xu H, Zhao X. Self-assembly-peptide hydrogels as tissue engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol. Biosci.10(10), 1164–1170 (2010).
  • Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res.39(2), 266–276 (1998).
  • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials24(24), 4353–4364 (2003).
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol.23(1), 47–55 (2005).
  • Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW. Growth factor delivery approaches in hydrogels. Biomacromolecules10(1), 9–18 (2009).
  • Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol.12(6), 295–310 (2003).
  • Lee HJ, Lee JS, Chansakul T, Yu C, Elisseef JH, Yu SM. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials27(30), 5268–5276 (2006).
  • Jing P, Rudra JS, Herr AB, Collier JH. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules9(9), 2438–2446 (2008).
  • Salinas CN, Anseth KS. Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J. Biomed. Mater. Res. A90(2), 456–464 (2009).
  • Cheung CY, McCartney SJ, Anseth KS. Synthesis of polymerizable superoxide dismutase mimetics to reduce reactive oxygen species damage in transplanted biomedical devices. Adv. Funct. Mater.18(20), 3119–3126 (2008).
  • Cheung CY, Anseth KS. Synthesis of immunoisolation barriers that provide localized immunosuppression for encapsulated pancreatic islets. Bioconjug. Chem.17(4), 1036–1042 (2006).
  • Lin CC, Metters AT, Anseth KS. Functional PEG-peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFα. Biomaterials30(28), 4907–4914 (2009).
  • Su J, Hu BH, Lowe WL, Kaufman DB, Messersmith PB. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials31(2), 308–314 (2010).
  • Lipke EA, West JL. Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. Acta Biomater.1(6), 597–606 (2005).
  • Jia X, Kiick KL. Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci.9(2), 140–156 (2009).
  • Hiemstra C, van der Aa LJ, Zhong Z, Kijkstra PJ, Feijen Jan. Rapidly in situ-forming degradable hydrogels form dextran thiols through Michael addition. Biomacromolecules8(5), 1548–1556 (2007).
  • Zieris A, Prokoph S, Levental KR et al. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials31(31), 7985–7994 (2010).
  • Jin R, Teixeira LSM, Krouwels A et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater.6(6), 1968–1977 (2010).
  • Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J. A versatile pH sensitive chondroitin sulphate–PEG tissue adhesive and hydrogel. Biomaterials31(10), 2788–2797 (2010).
  • Rizzi SC, Hubbell JA. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: development and physiochemical characteristics. Biomacromolecules6(3), 1226–1238 (2005).
  • Appelman TP, Mizrahi J, Elisseeff JH, Seliktar D. The influence of biological motifs and dynamic mechanical stiulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials32(6), 1508–1516 (2011).
  • Li F, Griffith M, Li Z et al. Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials26(16), 3093–3104 (2005).
  • Wang C, Stewart RJ, Kopecek J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature397(6718), 417–420 (1999).
  • Chen JP, Cheng TH. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci.6(12), 1026–1039 (2006).
  • Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials30(36), 6844–6853 (2009).
  • Prabaharan M, Mano JF. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-resoponsive polymers as novel biomaterials. Macromol. Biosci.6(12), 991–1008 (2006).
  • Myles JL, Burgess BT, Dickinson RB. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J. Biomater. Sci. Polym. Ed.11(1), 69–86 (2000).
  • Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater.7(1), 152–162 (2011).
  • Connelly JT, Garcia AJ, Levenston ME. Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials28(6), 1071–1083 (2007).
  • Khetan S, Katz JS, Burdick JA. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter5(8), 1601–1606 (2009).
  • Shu XZ, Ghosh K, Liu Y, Palumbo FS, Clark RA, Prestwich GD. Attachment and spreading of fibroblasts on an RGD peptide-modified hyaluronan hydrogel. J. Biomed. Mater. Res. A68(2), 365–375 (2004).
  • Kimura T, Nam K, Mutsuo S et al. Preparation of poly(vinyl alcohol)/DNA hydrogels via hydrogen bonds formed on ultra-high pressurization and controlled release of DNA from the hydrogels for gene delivery. J. Artif. Organs10(2), 104–108 (2007).
  • Bryant SJ, Davis-Arehart KA, Luo N, Shoemaker RK, Arthur JA, Anseth KS. Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules37(18), 6726–6733 (2004).
  • Lin C, Zhao P, Li F, Guo F, Li Z, Wen X. Thermosensitive in situ-forming dextran-pluronic hydrogels through Michael addition. Mater. Sci. Eng. C30(8), 1236–1244 (2010).
  • Wang C, Kopecek J, Stewart RJ. Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules2(3), 912–920 (2001).
  • Scott JE. Extracellular matrix, supramolecular organization and shape. J. Anat.187, 259–269 (1995).
  • Rhodes JM, Simons M. The extracellular matrix and blood vessel formation; not just a scaffold. J. Cell. Mol. Med.11(2), 176–205 (2007).
  • Ma PX. Biomimetic materials for tissue engineering. Adv. Drug Deliver. Rev.60(2), 184–198 (2008).
  • Chen R, Hunt JA. Biomimetic materials processing for tissue-engineering processes. J. Mater. Chem.17(38), 3974–3979 (2007).
  • Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng.103(4), 655–663 (2009).
  • Zhu J, Beamish JA, Tang C, Kottke-Marchant K, Marchant RE. Extracellular matrix-like cell-adhesive hydrogels form RGD-containing poly(ethylene glycol) diacrylate. Macromolecules39(4), 1305–1307 (2006).
  • Zhu J, Tang C, Kottke-Marchant K, Marchant RE. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug. Chem.20(2), 333–339 (2009).
  • Zhu J, Marchant RE. Solid-phase synthesis of tailed cyclic RGD peptides using glutamic acid: unexpected glutarimide formation. J. Pept. Sci.14, 690–696 (2008).
  • Liu SQ, Ee PLR, Ke CY, Hedrick JL, Yang YY. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials30(8), 1453–1461 (2009).
  • Polizzotti BD, Fairbanks BD, Anseth KS. Three-dimensional biochemical patterning of Click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules9(4), 1084–1087 (2008).
  • Liu SQ, Tian Q, Wang L et al. Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol. Rapid Commun.31(13), 1148–1154 (2010).
  • Zhou M, Smith AM, Das AK et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials30(13), 2523–2530 (2009).
  • Comisar WA, Hsiong SX, Kong HJ, Mooney MJ, Linderman JJ. Multi-scale modeling to predict ligand presentation within RGD nanopatterned hydrogels. Biomaterials27(10), 2322–2329 (2006).
  • Studenovska H, Vodicka P, Proks V, Hlucilova J, Motlik J, Rypacek F. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesive peptide for tissue engineering. J. Tissue Eng. Regen. Med.4(6), 454–463 (2010).
  • Herten M, Jung TE, Rothamel D et al. Biodegradation of different synthetic hydrogels made of polyethylene glycol hydrogel/RGD-peptide modificaitons: an immunohistochemical study in rats. Clin. Oral. Impl. Res.20(2), 116–125 (2009).
  • Schmidt DR, Kao WJ. Monocyte activation in response to polyethylene glycol hydrogels grafted with RGD and PHSRN separated by interpositional spacers of various length. J. Biomed. Mater. Res. A83(3), 617–625 (2007).
  • Benoit DSW, Anseth KS. The effect on osteoblast function of coloclized RGD and PHSRN epitopes on PEG surfaces. Biomaterials26(25), 5209–5220 (2005).
  • Masters KS, Shah DN, Walker G, Leinwand LA, Anseth KS. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. A71(1), 172–180 (2004).
  • Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials27(28), 4881–4893 (2006).
  • Park CH, Hong YJ, Park K, Han DK. Peptide-grafted lactide-based poly(ethylene glycol) porous scaffolds for specific cell adhesion. Macromol. Res.18(5), 526–532 (2010).
  • Massia SP, Hubbell JA. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin α4 β1. J. Biol. Chem.267(20), 14019–14036 (1992).
  • Drake SL, Varnum J, Mayo KH, Letourneau PC, Furcht LT, McCarthy JB. Structure features of fibronectin synthetic peptide FN-C/H II, responsive for cell adhesion, neurite extension, and heparin. J. Biol. Chem.268(21), 15859–15867 (1993).
  • Hansen LK, O’Leary JJ, Skubitz APN, Furcht LT, McCarthy JB. Identification of a homologous heparin binding peptide sequence present in fibronectin and the 70 kDa family of heat-shock proteins. Biochim. Biophys. Acta1252(1), 135–145 (1995).
  • Woods A, McCarthy JB, Furcht LT, Couchman JR. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol. Biol. Cell4(6), 605–613 (1993).
  • Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods7(12), 989–994 (2010).
  • Nomizu M, Weeks BS, Weston CA, Kim WH, Kleinman HK, Yamada Y. Structure–activity study of a laminin α1 chain active peptide segment Ile–Lys–Val–Ala–Val (IKVAV). FEBS Lett.365(2–3), 227–231 (1995).
  • Hynd MR, Frampton JP, Dowell-Mesfin N, Turner JN, Shain W. Directed cell growth on protein-functionalized hydrogel surfaces. J. Neurosci. Meth.162(1–2), 255–263 (2007).
  • Saha K, Irwin EF, Kozhukh J, Schaffer DV, Healy KE. Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A81(1), 240–249 (2007).
  • Santiago LY, Nowak RW, Rubin JP, Marra KG. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials27(15), 2962–2969 (2006).
  • Zustiak SP, Durbal R, Leach JB. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomater.6(9), 3404–3414 (2010).
  • Tsur-Gang O, Ruvinov E, Landa N et al. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials30(2), 189–195 (2009).
  • Xu J, Zhou X, Ge H et al. Endothelial cells anchoring by functionalized yeast polypeptide. J. Biomed. Mater. Res. A87(3), 819–821 (2008).
  • Fittkau MH, Zilla P, Bezuidenhout D et al. The selective modulating of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials26(2), 167–174 (2005).
  • Webber LM, Anseth KS. Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol.27(8), 667–673 (2008).
  • Webber LM, Haydam KN, Haskins K, Anseth KS. The effects of cell-matrix interactions on encapsulated β-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials28(19), 3004–3011 (2007).
  • Luzak B, Golanski J, Rozalski M, Boncler MA, Watala C. Inhibition of collagen-induced platelet reactivity by DGEA peptide. Acta Biochim. Pol.50(4), 1119–1128 (2003).
  • Mineur P, Guignandon A, Lambert CA, Lapiere CM, Nusgens BV. RGDS and DGEA-induced [Ca2+]i signaling in human dermal fibroblast. Biochim. Biophys. Acta1746(1), 28–37 (2005).
  • Renner C, Sacca B, Moroder L. Synthetic heterotrimeric collagen peptides as mimics of cell adhesion sites of the basement membrane. Biopolymers76(1), 34–47 (2004).
  • Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J. Biomed. Mater. Res.60(1), 86–93 (2002).
  • Mann BK, Schmedlen RH, West JL. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials22(5), 439–444 (2001).
  • Mann BK, Tsa AT, Scott-Burden T, West JL. Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition. Biomaterials20(23–24), 2281–2286 (1999).
  • Nagase H, Fields GB. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers40(4), 399–416 (1996).
  • Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol.19(7), 661–667 (2001).
  • Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials31(13), 3736–3743 (2010).
  • Tsubota Y, Mizushima H, Hirosaki T, Higashi S, Yasumitsu H, Miyazaki K. Isolation and activity of proteolytic fragment of laminin-5 α3 chain. Biochem. Biophys. Res. Commun.278(3), 614–620 (2000).
  • Ogawa T, Tsubota Y, Maeda M, Kariya Y, Miyazaki K. Regulation of biological activity of laminin-5 by proteolytic processing of γ2 chain. J. Cell. Biochem.92(4), 701–714 (2004).
  • Pirila E, Sharabi A, Salo T et al. Matrix metalloproteinases process the laminin-5 γ2 chain and regulate epithelial cell migration. Biochem. Biophys. Res. Commun.303(4), 1012–1017 (2003).
  • Shikanov A, Smith RM, Xu M, Woodruff TK, Shea LD. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials32(10), 2524–2531 (2011).
  • Jo YS, Rizzi SC, Ehrbar M, Weber FZ, Hubbell JA, Lutolf MP. Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides. J. Biomed. Mater. Res. A93(3), 870–877 (2010).
  • Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules3(4), 710–723 (2002).
  • Fosang AJ, Last K, Knauper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett.380(1–2), 17–20 (1996).
  • Salinas CN, Anseth KS. The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials29(15), 2370–2377 (2008).
  • Bott K, Upton Z, Schrobback K et al. The effect of matrix characteristics on fibroblast proliferation. Biomaterials31(32), 8454–8464 (2010).
  • Lutolf MP, Weber FE, Schmoekel HG et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol.21(5), 513–518 (2003).
  • Raeber GP, Lutolf MP, Hubbell JA. Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater.3(5), 615–629 (2007).
  • Phelps EA, Landazuri N, Thule PM, Taylor WB, Garcia AJ. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA107(8), 3323–3328 (2010).
  • DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater.8(8), 659–664 (2009).
  • He X, Jabbari E. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules8(3), 780–792 (2007).
  • Lee SH, Moon JJ, Miller JS, West JL. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualized collagenase activity during three-dimensional cell migration. Biomaterials28(20), 3163–3170 (2007).
  • Keen I, Lambert L, Chirila TV, Paterson SM, Whittaker AK. Degradable hydrogels for tissue engineering – part I: synthesis by RAFT polymerization and characterization of PHEMA containing enzymatically degradable crosslinks. J. Biomim. Biomater. Tissue Eng.6, 67–85 (2010).
  • Patel PN, Gobin AS, West JL, Patrick CW. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng.11(9–10), 1498–1505 (2005).
  • West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules32(1), 241–244 (1999).
  • Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesion and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials22(22), 3045–3051 (2001).
  • Patrick AG, Ulijin RV. Hydrogels for the detection and management of protease levels. Macromol. Biosci.10(10), 1184–1193 (2010).
  • Pak CC, Erukulla RK, Ahl PL, Janoff AD, Meers P. Elastase activated liposomal delivery to nucleated cells. Biochim. Biophys. Acta1419(2), 111–126 (1999).
  • Aimetti AA, Tibbitt MW, Anseth KS. Human neutrophil elastase responsive delivery from poly(ethylene glycol) hydrogels. Biomacromolecules10(6), 1484–1489 (2009).
  • Casadio YS, Brown DH, Chirila TV, Kraatz HB, Baker MV. Biodegradable poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents. Biomacromolecules11(11), 2949–2959 (2010).
  • Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS. A versatile synthetic extracellular matrix mimic via thioi-norbornene photopolymerization. Adv. Mater.21(48), 5005–5010 (2009).
  • Ahrendt G, Chickering DE, Ranieri JP. Angiogenic growth factor: A review for tissue engineering. Tissue Eng.4(2), 117–130 (1998).
  • Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res.20(80), 1103–1112 (2003).
  • Phelps EA, Garcia AJ. Update on therapeutic vascularization strategies. Regen. Med.4(1), 65–80 (2009).
  • Zhang S, Uludag H. Nanoparticle systems for growth factor delivery. Pharm. Res.26(7), 1561–1579 (2009).
  • Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J.11(1), 51–59 (1997).
  • Whitelock JM, Murdoch AD, Iozzo RV, Underwoods PA. The degradation of human endothelial cell-derived perlecan and release bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem.271(17), 10079–10086 (1996).
  • Hiemstra C, Zhong Z, van Steenbergen MJ, Hennink WE, Feijen J. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels. J. Control. Release122(1), 71–78 (2007).
  • Andreopoulos FM, Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials27(11), 2468–2476 (2006).
  • Burdick JA, Mason MN, Hinman AD, Thorne K, Anseth KS. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J. Control. Release83(1), 53–63 (2002).
  • van de Wetering P, Metters AT, Schoenmakers RG, Hubbell JA. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J. Control. Release102(3), 619–627 (2005).
  • Lim SM, Oh SH, Lee HH, Yuk SH, Im GI, Lee JH. Dual growth factor-releasing nanoparticle/hydrogel system for cartilage tissue engineering. J. Mater. Sci. Mater. Med.21(9), 2593–2600 (2010).
  • Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials28(17), 2706–2717 (2007).
  • Moya ML, Cheng MH, Huang JJ et al. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials31(10), 2816–2826 (2010).
  • Chen RR, Silve EA, Yuen WW et al. Integrated approach to designing growth factor delivery systems. FASEB J.21(14), 3896–3903 (2007).
  • Park H, Temenoff J, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials28(21), 3217–3227 (2007).
  • Jay SM, Stepherd BR, Bertram JP, Pober JS, Saltzman WM. Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB J.22(8), 2919–2956 (2008).
  • Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J. Control. Release134(1), 26–34 (2009).
  • Ho YC, Wu SJ, Mi FL et al. Thiol-modified chitosan sulfate nanoparticles for protection and release of basic fibroblast growth factor. Bioconjug. Chem.21(1), 28–38 (2010).
  • Ehrbar M, Rizzi SC, Hlushchuk R et al. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials28(26), 3856–3866 (2007).
  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF–fibrin matrices for endothelialization. J. Control. Release72(1–3), 101–103 (2001).
  • Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A68(4), 704–716 (2004).
  • Gobin AS, West JL. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels. Biotechnol. Prog.19(6), 1781–1785 (2003).
  • Mann BK, Schmedlen RH, West JL. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials22(5), 439–444 (2001).
  • DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials26(16), 3227–3234 (2005).
  • He X, Ma J, Jabbari E. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic diffierentiation of marrow stromal cells. Langmuir24(21), 12508–12516 (2008).
  • Benoit DSW, Durney AR, Anseth KS. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials28(1), 66–77 (2007).
  • Tae G, Kim YJ, Choi WI, Kim M, Stayton PS, Hoffman AS. Formation of a novel heparin-based hydroel in the presence of heparin-binding biomolecules. Biomacromolecules8(6), 1979–1986 (2007).
  • Zhang L, Furst EC, Kiick KL. Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J. Control. Release114(2), 130–142 (2006).
  • Nie T, Akins RE, Kiick KL. Production of heparin-containing hydrogels for modulating cell responses. Acta Biomater.5(3), 865–875 (2009).
  • Yamaguchi N, Zhang L, Chae BS, Palla CS, Furst EM, Kiick KL. Growth factor mediated assembly of cell receptor-responsive hydrogels. J. Am. Chem. Soc.129(11), 3040–3041 (2007).
  • Nakamura S, Ishihara M, Obara K et al. Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. A78(2), 364–371 (2006).
  • Fujita M, Ishihara M, Simizu M et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogels. Biomaterials25(4), 699–706 (2004).
  • Cai S, Liu Y, Zheng X, Prestwich GD. Injectable glycosaminoglyosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials26(30), 6054–6067 (2005).
  • Rajangam K, Arnold MS, Rocco MA, Stupp SI. Peptide amphiphile nanostructure-heparin interactions and their relationship to bioactivity. Biomaterials29(23), 3298–3305 (2008).
  • Lin CC, Anseth KS. Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv. Funct. Mater.19(14), 2325–2331 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.