158
Views
56
CrossRef citations to date
0
Altmetric
Special Report

Functionalized carbon nanotubes for anticancer drug delivery

, &
Pages 561-566 | Published online: 09 Jan 2014

References

  • Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliver. Rev.58(14), 1456–1459 (2006).
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7(9), 771–782 (2008).
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2(12), 751–760 (2007).
  • Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm. Res.26(4), 746–769 (2009).
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliver. Rev.58(14), 1460–1470 (2006).
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol.9(6), 674–679 (2005).
  • Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun.5, 571–577 (2005).
  • Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Accounts Chem. Res.41(1), 60–68 (2008).
  • Lu FS, Gu LR, Meziani MJ et al. Advances in bioapplications of carbon nanotubes. Adv. Mater.21(2), 139–152 (2009).
  • Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol.4(10), 627–633 (2009).
  • Liu Z, Chen K, Davis C et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res.68(16), 6652–6660 (2008).
  • Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem. Rev.106(3), 1105–1136 (2006).
  • Liu Y, Wu DC, Zhang WD et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Edit.44(30), 4782–4785 (2005).
  • Lo MY, Lay CL, Lu XH, Liu Y. Finer structures of polyelectrolyte multilayers reflected by solution H-1 NMR. J. Phys. Chem. B.112(42), 13218–13224 (2008).
  • Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano.1(1), 50–56 (2007).
  • Liu Z, Winters M, Holodniy M, Dai HJ. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Edit.46(12), 2023–2027 (2007).
  • Ren YP, Pastorin G. Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv. Mater.20(11), 2031–2036 (2008).
  • Yanagi K, Miyata Y, Kataura H. Highly stabilized β-carotene in carbon nanotubes. Adv. Mater.18(2), 437–441 (2006).
  • Kam NWS, Liu Z, Dai HJ. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Edit.45(4), 577–581 (2006).
  • Lay CL, Liu HQ, Tan HR, Liu Y. Delivery of paclitaxel by physically loading onto poly(ethyleneglycol) (PEG)-graft carbon nanotubes for potent cancer therapeutics. Nanotechnology21(6), 065101 (2010).
  • Liu Z, Fan AC, Rakhra K et al. Supramolecular π-stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Edit.48(41), 7668–7672 (2009).
  • Liu Z, Tabakman SM, Chen Z, Dai HJ. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc.4(9), 1372–1382 (2009).
  • Kostarelos K, Lacerda L, Pastorin G et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol.2(2), 108–113 (2007).
  • Schipper ML, Nakayama-Ratchford N, Davis CR et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol.3(4), 216–221 (2008).
  • Liu Z, Davis C, Cai WB, He L, Chen XY, Dai HJ. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA105(5), 1410–1415 (2008).
  • Yang ST, Fernando KAS, Liu JH et al. Covalently PEGylated carbon nanotubes with stealth character in vivo. Small4(7), 940–944 (2008).
  • Chen JY, Chen SY, Zhao XR, Kuznetsova LV, Wong SS, Ojima I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc.130(49), 16778–16785 (2008).
  • Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc.127(27), 9875–9880 (2005).
  • Liu Z, Tabakman S, Welsher K, Dai HJ. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res.2(2), 85–120 (2009).
  • Hong SY, Tobias G, Al-Jamal KT et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater.9(6), 485–490 (2010).
  • Samori C, Ali-Boucetta H, Sainz R et al. Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem. Commun.46(9), 1494–1496 (2010).
  • Zhang XK, Meng LJ, Lu QG, Fei ZF, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials30(30), 6041–6047 (2009).
  • Kam NWS, Dai HJ. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc.127(16), 6021–6026 (2005).
  • Pantarotto D, Singh R, McCarthy D et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Edit.43(39), 5242–5246 (2004).
  • Singh R, Pantarotto D, McCarthy D et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc.127(12), 4388–4396 (2005).
  • Herrero MA, Toma FM, Al-Jamal KT et al. Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J. Am. Chem. Soc.131(28), 9843–9848 (2009).
  • Delogu LG, Magrini A, Bergamaschi A et al. Conjugation of antisense oligonucleotides to PEGylated carbon nanotubes enables efficient knockdown of PTPN22 in T lymphocytes. Bioconjugate Chem.20(3), 427–431 (2009).
  • Kam NWS, O’Connell M, Wisdom JA, Dai HJ. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA102(33), 11600–11605 (2005).
  • Kang B, Yu DC, Dai YD, Chang SQ, Chen D, Ding YT. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘bomb’ agents. Small5(11), 1292–1301 (2009).
  • Podesta JE, Al-Jamal KT, Herrero MA et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small5(10), 1176–1185 (2009).
  • Liu Z, Cai WB, He LN et al.In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2(1), 47–52 (2007).
  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. (4), 459–461 (2008).
  • Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharmaceutics1(6), 399–405 (2004).
  • Chaudhuri P, Soni S, Sengupta S. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology21(2), 025102 (2010).
  • Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S. Shape effect of carbon nanovectors on angiogenesis. ACS Nano.4(1), 574–582 (2010).
  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(iv) anticancer drug design. J. Am. Chem. Soc.129(27), 8438–8439 (2007).
  • Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted single-wall carbon nanotube-mediated Pt(iv) prodrug delivery using folate as a homing device. J. Am. Chem. Soc.130(34), 11467–11476 (2008).
  • Bhirde AA, Patel V, Gavard J et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano3(2), 307–316 (2009).
  • Prencipe G, Tabakman SM, Welsher K et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc.131(13), 4783–4787 (2009).
  • Lay CL, Liu HQ, Wu DC, Liu Y. Poly(ethylene glycol)-graft-hollow silica vesicles for drug delivery. Chem. Eur. J.16(10), 3001–3004 (2010).
  • Lee JCM, Bermudez H, Discher BM et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng.73(2), 135–145 (2001).
  • Medical Applications of Liposomes. Lasic DD, Papahadjopoulos D (Eds). Elsevier Science, Amsterdam, The Netherlands (1998).
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew. Chem. Int. Edit.45(8), 1198–1215 (2006).
  • Wu W, Li R, Bian X et al. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano.3(9), 2740–2750 (2009).
  • Zhou FF, Xing D, Wu BY, Wu SN, Ou ZM, Chen WR. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett.10(5), 1677–1681 (2010).
  • Raffa V, Ciofani G, Nitodas S et al. Can the properties of carbon nanotubes influence their internalization by living cells? Carbon46, 1600–1610 (2008).
  • Antonelli A, Serafini S, Menotta M et al. Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology21, 425101–425115 (2010).
  • Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano.3(1), 149–158 (2009).
  • Singh R, Pantarotto D, Lacerda L et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA103(9), 3357–3362 (2006).
  • Cherukuri P, Gannon CJ, Leeuw TK et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA103(50), 18882–18886 (2006).
  • Kagan VE, Konduru NV, Feng WH et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol.5(5), 354–359 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.