592
Views
49
CrossRef citations to date
0
Altmetric
Special Report

Temperature-sensitive polymers for drug delivery

, , , &
Pages 339-351 | Published online: 09 Jan 2014

References

  • Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin. Drug Deliv. 5(10), 1077–1091 (2008).
  • Bajpai AK, Bajpai J, Saini R, Gupta R. Responsive polymers in biology and technology. Polymer Rev. 51(1), 53–97 (2011).
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006).
  • Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin. Drug Deliv. 8(8), 991–1007 (2011).
  • Hoogenboom R, Lambermont-Thijs HML, Jochems MJHC et al. A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. Soft Matter 5(19), 3590–3592 (2009).
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progr. Polymer Sci. 32(8–9), 962–990 (2007).
  • Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100(23), 13549–13554 (2003).
  • Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215–1242 (2011).
  • Tanaka T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 40(12), 820–823 (1978).
  • Neradovic D, Hinrichs WLJ, Kettenes-Van Den Bosch JJ, Hennink WE. Poly(N-isopropylacrylamide) with hydrolyzable lactic acid ester side groups: a new type of thermosensitive polymer. Macromol. Rapid Commun. 20(11), 577–581 (1999).
  • Ruggiero A, Villa CH, Bander E et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107(27), 12369–12374 (2010).
  • Yoshida T, Aoyagi T, Kokufuta E, Okano T. Newly designed hydrogel with both sensitive thermoresponse and biodegradability. J. Polym. Sci. A Polym. Chem. 41(6), 779–787 (2003).
  • Guan J, Hong Y, Ma Z, Wagner WR. Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability. Biomacromolecules 9(4), 1283–1292 (2008).
  • Ma Z, Nelson DM, Hong Y, Wagner WR. Thermally responsive injectable hydrogel incorporating methacrylate–polylactide for hydrolytic lability. Biomacromolecules 11(7), 1873–1881 (2010).
  • Cui Z, Lee BH, Vernon BL. New hydrolysis-dependent thermosensitive polymer for an injectable degradable system. Biomacromolecules 8(4), 1280–1286 (2007).
  • Cui Z, Lee BH, Pauken C, Vernon BL. Manipulating degradation time in a N-isopropylacrylamide-based co-polymer with hydrolysis-dependent LCST. J. Biomater. Sci. Polym. Ed. 21(6), 913–926 (2010).
  • Fitzpatrick SD, Jafar Mazumder MA, Muirhead B, Sheardown H. Development of injectable, resorbable drug-releasing copolymer scaffolds for minimally invasive sustained ophthalmic therapeutics. Acta Biomater. 8, 2517–2528 (2012).
  • Liu CB, Gong CY, Huang MJ et al. Thermoreversible gel–sol behavior of biodegradable PCL–PEG–PCL triblock copolymer in aqueous solutions. J. Biomed. Mater. Res. Part B Appl. Biomater. 84(1), 165–175 (2008).
  • Geever LM, Lyons JG, Higginbotham CL. Photopolymerisation and characterisation of negative temperature sensitive hydrogels based on N,N-diethylacrylamide. J. Mater. Sci. Lett. 46(2), 509–517 (2011).
  • Patra L, Vidyasagar A, Toomey R. The effect of the Hofmeister series on the deswelling isotherms of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide). Soft Matter 7(13), 6061–6067 (2011).
  • Beija M, Marty JD, Destarac M. Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. Chem. Commun. 47(10), 2826–2828 (2011).
  • Advances in Polymer Science. Aseyev V, Muller AHE, Tenhu H, Borisov O, Winnik FM (Eds). Springer Berlin Heidelberg, Berlin, Germany (2010).
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 68(1), 34–45 (2008).
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130(2), 98–106 (2008).
  • Wells LA, Lasowski F, Fitzpatrick SD, Sheardown H. Responding to change: thermo- and photo-responsive polymers as unique biomaterials. Crit. Rev. Biomed. Eng. 38(6), 487–509 (2010).
  • Sosnik A, Cohn D, San Román J, Abraham GA. Crosslinkable PEO–PPO–PEO-based reverse thermo-responsive gels as potentially injectable materials. J. Biomater. Sci. Polym. Ed. 14(3), 227–239 (2003).
  • Cohn D, Sosnik A, Garty S. Smart hydrogels for in situ generated implants. Biomacromolecules 6(3), 1168–1175 (2005).
  • Sosnik A, Cohn D. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials 26(4), 349–357 (2005).
  • Cohn D, Lando G, Sosnik A, Garty S, Levi A. PEO–PPO–PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 27(9), 1718–1727 (2006).
  • Wang Y, Tan Y, Huang X, Xu G. Gelation behavior of thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock polycarbonates. J. Macromol. Sci. A 46(4), 397–404 (2009).
  • Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J. Inorg. Organomet. Polymer. Mater. 16(4), 365–385 (2006).
  • Schacht E, Vandorpe J, Dejardin S, Lemmouchi Y, Seymour L. Biomedical applications of degradable polyphosphazenes. Biotechnol. Bioeng. 52(1), 102–108 (1996).
  • Laurencin CT, Koh HJ, Neenan TX, Allcock HR, Langer R. Controlled release using a new bioerodible polyphosphazene matrix system. J. Biomed. Mater. Res. 21(10), 1231–1246 (1987).
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Rev. 101(7), 1869–1879 (2001).
  • Conconi MT, Lora S, Baiguera S et al. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J. Biomed. Mater. Res. A 71(4), 669–674 (2004).
  • Bhattacharyya S, Lakshmi S, Bender J et al. Preparation of poly bis(carboxylato phenoxy)phosphazene non-woven nanofiber mats by electrospinning. In: Architecture and Application of Biomaterials and Biomolecular Materials. Wong JY, Plant AL, Schmidt CE et al. (Eds). Materials Research Society, PA, USA, 157–163 (2004).
  • Langone F, Lora S, Veronese FM et al. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomaterials 16(5), 347–353 (1995).
  • Al-Abd AM, Hong KY, Song SC, Kuh HJ. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J. Control. Release 142(1), 101–107 (2010).
  • Chilkoti A, Dreher MR, Meyer DE. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 54(8), 1093–1111 (2002).
  • Ge X, Filipe CD. Simultaneous phase transition of ELP tagged molecules and free ELP: an efficient and reversible capture system. Biomacromolecules 7(9), 2475–2478 (2006).
  • Ge X, Hoare T, Filipe CD. Protein-based aqueous-multiphasic systems. Langmuir 26(6), 4087–4094 (2010).
  • Bessa PC, Machado R, Nürnberger S et al. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J. Control. Release 142(3), 312–318 (2010).
  • Meyer DE, Chilkoti A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3(2), 357–367 (2002).
  • McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastin-like polypeptides. Adv. Drug Deliv. Rev. 62(15), 1456–1467 (2010).
  • Liu W, MacKay JA, Dreher MR et al. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model. J. Control. Release 144(1), 2–9 (2010).
  • Dreher MR, Simnick AJ, Fischer K et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130(2), 687–694 (2008).
  • MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 8(12), 993–999 (2009).
  • Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A. Drug targeting using thermally responsive polymers and local hyperthermia. J. Control. Release 74(1–3), 213–224 (2001).
  • Chang Y, Xiao L, Du Y. Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polymer Bull. 63(4), 531–545 (2009).
  • Chenite A, Chaput C, Wang D et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21), 2155–2161 (2000).
  • Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23(13), 2717–2722 (2002).
  • Ruel-Gariépy E, Leroux JC. In situ-forming hydrogels – review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 58(2), 409–426 (2004).
  • Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011).
  • Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J. Appl. Polymer. Sci. 24(4), 1073–1087 (1979).
  • Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006).
  • Kang CE, Poon PC, Tator CH, Shoichet MS. A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng. Part A 15(3), 595–604 (2009).
  • Ballios BG, Cooke MJ, van der Kooy D, Shoichet MS. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31(9), 2555–2564 (2010).
  • De Freitas RA, Busato AP, Mitchell DA, Silveira JLM. Degalatosylation of xyloglucan: effect on aggregation and conformation, as determined by time dependent static light scattering, HPSEC-MALLS and viscosimetry. Carbohydr. Polymer. 83(4), 1636–1642 (2011).
  • Miyazaki S, Suisha F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release 56(1–3), 75–83 (1998).
  • Itoh K, Tsuruya R, Shimoyama T et al. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Dev. Ind. Pharm. 36(4), 449–455 (2010).
  • Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int. J. Pharm. 229(1–2), 29–36 (2001).
  • Takahashi A, Suzuki S, Kawasaki N et al. Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Int. J. Pharm. 246(1–2), 179–186 (2002).
  • Suisha F, Kawasaki N, Miyazaki S et al. Xyloglucan gels as sustained release vehicles for the intraperitoneal administration of mitomycin C. Int. J. Pharm. 172(1–2), 27–32 (1998).
  • Kim SJ, Shin SR, Kim NG, Kim SI. Swelling behavior of semi-interpenetrating polymer network hydrogels based on chitosan and poly(acryl amide). J. Macromol. Sci. Pure. Appl. Chem. A42(8), 1073–1083 (2005).
  • Owens DE, Iii, Jian Y, Fang JE, Slaughter BV, Chen Y-H, Peppas NA. Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromol. 40(20), 7306–7310 (2007).
  • Chen Y, Ding D, Mao Z et al. Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. Biomacromolecules 9(10), 2609–2614 (2008).
  • Quan CY, Chen JX, Wang HY et al. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 4(7), 4211–4219 (2010).
  • Wei H, Cheng C, Chang C et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-poly(methyl methacrylate). Langmuir 24(9), 4564–4570 (2008).
  • Stuart MaC, Huck WTS, Genzer J et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010).
  • Li Y, Lokitz BS, McCormick CL. Thermally responsive vesicles and their structural ‘locking’ through polyelectrolyte complex formation. Angew. Chem. Int. Ed. Engl. 45(35), 5792–5795 (2006).
  • Qin S, Geng Y, Discher DE, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater. 18(21), 2905–2909 (2006).
  • Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10(2), 197–209 (2009).
  • Patenaude M, Hoare T. Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules 13(2), 369–378 (2012).
  • Fitzpatrick SD, Jafar Mazumder MA, Lasowski F, Fitzpatrick LE, Sheardown H. PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 11(9), 2261–2267 (2010).
  • Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater. 4(2), 022001 (2009).
  • Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Progr. Polymer Sci. 35, 278–301 (2010).
  • McCoy CP, Brady C, Cowley JF et al. Triggered drug delivery from biomaterials. Expert Opin. Drug Deliv. 7(5), 605–616 (2010).
  • Strzegowski LA, Martinez MB, Gowda DC, Urry DW, Tirrell DA. Photomodulation of the inverse temperature transition of a modified elastin poly(pentapeptide). J. Am. Chem. Soc. 116(2), 813–814 (1994).
  • Zrinyi M. Intelligent polymer gels controlled by magnetic fields. Colloid. Polymer. Sci. 278(2), 98–103 (2000).
  • Kim SJ, Park SJ, Lee SM, Lee YM, Kim HC, Kim SI. Electroactive characteristics of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). J. Appl. Polymer Sci. 89(4), 890–894 (2003).
  • Handbook of Stimuli-Responsive Materials. Urban MW (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).
  • Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett. 118(1), 13–19 (1997).
  • Brazel CS, Peppas NA. Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28(24), 8016–8020 (1995).
  • Leung MF, Zhu JM, Harris FW, Li P. Novel synthesis and properties of smart core-shell microgels. Macromol. Symp. 226, 177–185 (2005).
  • Lu ZR, Kopeckova P, Kopecek J. Antigen responsive hydrogels based on polymerizable antibody Fab ‘ fragment. Macromol. Biosci. 3(6), 296–300 (2003).
  • Zhang S-B, Chu L-Y, Xu D, Zhang J, Ju X-J, Xie R. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature. Polymer Adv. Tech. 19(8), 937–943 (2008).
  • Jo SM, Lee HY, Kim JC. Glucose-sensitivity of liposomes incorporating conjugates of glucose oxidase and poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate). Int. J. Biol. Macromolecules 45(4), 421–426 (2009).
  • Ramanan VV, Hribar KC, Katz JS, Burdick JA. Nanofiber-nanorod composites exhibiting light-induced reversible lower critical solution temperature transitions. Nanotechnology 22(49), 494009 (2011).
  • Fan T, Li M, Wu X, Li M, Wu Y. Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloids Surf. B. Biointerfaces 88(2), 593–600 (2011).
  • Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res. 62(24), 7280–7283 (2002).
  • Laukkanen A, Valtola L, Winnik F. Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water:  a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 37(6), 2268–2274 (2004).
  • Schild H. Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J. Phys. Chem. B 94, 4352–4356 (1990).
  • Cao Y, Zhu X, Luo J. Effects of substitution groups on the RAFT polymerization of N-alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 40(18), 6481–6488 (2007).
  • Liu HY, Zhu XX. Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer 40(25), 6985–6990 (1999).
  • Uguzdogan E, Camh T, Kabasakal O et al. A new temperature-sensitive polymer: poly(ethoxypropylacrylamide). Eur. Polymer J. 41, 2142–2149 (2005).
  • Yamazaki A, Song J, Winnik F, Brash J. Synthesis and solution properties of fluorescently labeled amphiphilic (N-alkylacrylamide) oligomers. Macromol. 31, 109–115 (1998).
  • Persson J, Johansson HO, Galaev I, Mattiasson B, Tjerneld F. Aqueous polymer two-phase systems formed by new thermoseparating polymers. Bioseparation 9(2), 105–116 (2000).
  • Yuk S, Cho S, Lee S. pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules 30, 6856–6859 (1997).
  • Liu S, Armes SP. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J. Am. Chem. Soc. 123(40), 9910–9911 (2001).
  • Chiu TT, Thill BP, Fairchok WJ. Poly(2-ethyl-2-oxazoline): a new water- and organic-soluble adhesive. In: Advances in Chemistry. American Chemical Society, Washington, DC, USA, 425–433 (1986).
  • Uyama H, Kobayashi S. A novel thermo-sensitive polymer. Poly(2-iso-propyl-2-oxazoline). Chem. Lett. 21(9), 1643–1646 (1992).
  • Fusco S. Perspectives on: PEO–-PPO–PEO triblock copolymers and their biomedical applications. J. Bioact. Compat. Polym. 21(2), 149–164 (2006).
  • Gao Y, Sun Y, Ren F, Gao S. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev. Ind. Pharm. 36(10), 1131–1138 (2010).
  • Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645), 860–862 (1997).
  • Lutz JF, Akdemir O, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J. Am. Chem. Soc. 128(40), 13046–13047 (2006).
  • Badi N, Lutz JF. PEG-based thermogels: applicability in physiological media. J. Control. Release 140(3), 224–229 (2009).
  • Gong C, Shi S, Wu L et al. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol–gel–sol transition and drug delivery behavior. Acta Biomater. 5(9), 3358–3370 (2009).
  • Dayananda K, He C, Lee DS. In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer 49(21), 4620–4625 (2008).
  • Chilkoti A, Christensen T, MacKay JA. Stimulus responsive elastin biopolymers: Applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10(6), 652–657 (2006).
  • Urry D, Luan C, Parker T. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 113(11), 4346–4348 (1991).
  • Liu R, Fraylich M, Saunders BR. Thermoresponsive copolymers: from fundamental studies to applications. Colloid. Polym. Sci. 287(6), 627–643 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.