152
Views
9
CrossRef citations to date
0
Altmetric
Review

The use of oxidized zirconium alloy in knee arthroplasty

, &
Pages 409-421 | Published online: 09 Jan 2014

References

  • Felson DT. Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev. 10, 1–28 (1988).
  • Liu SS, Della Valle AG, Besculides MC, Gaber LK, Memtsoudis SG. Trends in mortality, complications, and demographics for primary hip arthroplasty in the United States. Int. Orthop. 33(3), 643–651 (2009).
  • Bae DK, Song SJ, Park MJ, Eoh JH, Song JH, Park CH. Twenty-year survival analysis in total knee arthroplasty by a single surgeon. J. Arthroplasty doi:10.1016/j.arth.2011.10.027 (2011) (Epub ahead of print).
  • Robertsson O, Bizjajeva S, Fenstad AM et al. Knee arthroplasty in Denmark, Norway and Sweden. Acta Orthop. 81(1), 82–89 (2010).
  • Gioe TJ, Novak C, Sinner P, Ma W, Mehle S. Knee arthroplasty in the young patient: survival in a community registry. Clin. Orthop. Relat. Res. 464, 83–87 (2007).
  • Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today? Clin. Orthop. Relat. Res. 404, 7–13 (2002).
  • Collier MB, Engh CA Jr, McAuley JP, Engh GA. Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J. Bone Joint Surg. Am. 89(6), 1306–1314 (2007).
  • Schmalzried TP, Szuszczewicz ES, Northfield MR et al. Quantitative assessment of walking activity after total hip or knee replacement. J. Bone Joint Surg. Am. 80(1), 54–59 (1998).
  • Laskin RS. An oxidized Zr ceramic surfaced femoral component for total knee arthroplasty. Clin. Orthop. Relat. Res. 416, 191–196 (2003).
  • Ollivere B, Wimhurst JA, Clark IM, Donell ST. Current concepts in osteolysis. J. Bone Joint Surg. Br. 94(1), 10–15 (2012).
  • Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J. Bone Joint Surg. Am. 74(6), 849–863 (1992).
  • Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J. Arthroplasty 17(5), 649–661 (2002).
  • Wilkinson JM, Hamer AJ, Stockley I, Eastell R. Polyethylene wear rate and osteolysis: critical threshold versus continuous dose–response relationship. J. Orthop. Res. 23(3), 520–525 (2005).
  • Grupp TM, Kaddick C, Schwiesau J, Maas A, Stulberg SD. Fixed and mobile bearing total knee arthroplasty – influence on wear generation, corresponding wear areas, knee kinematics and particle composition. Clin. Biomech. 24(2), 210–217 (2009).
  • Morra EA, Greenwald AS. Polymer insert stress in total knee designs during high-flexion activities: a finite element study. J. Bone Joint Surg. Am. 87(Suppl. 2), 120–124 (2005).
  • McEwen HM, Barnett PI, Bell CJ et al. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J. Biomech. 38(2), 357–365 (2005).
  • Koshino T, Okamoto R, Takagi T, Yamamoto K, Saito T. Cemented ceramic YMCK total knee arthroplasty in patients with severe rheumatoid arthritis. J. Arthroplasty 17(8), 1009–1015 (2002).
  • Bal BS, Garino J, Ries M, Rahaman MN. A review of ceramic bearing materials in total joint arthroplasty. Hip Int. 17(1), 21–30 (2007).
  • Iida T, Minoda Y, Kadoya Y et al. Mid-term clinical results of alumina medial pivot total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. doi:10.1007/s00167-011-1734-3 (2011) (Epub ahead of print).
  • Bergschmidt P, Lohmann C, Ganzer D et al. Total knee replacement with ceramic femoral components: a national prospective multicenter study of clinical and radiological outcomes. Orthopade 40(3), 224–230 (2011).
  • Davidson JA. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Clin. Orthop. Relat. Res. 294, 361–378 (1993).
  • Patel AM, Spector M. Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty. Biomaterials 18(5), 441–447 (1997).
  • Hunter G, Dickinson J, Herb B, Graham R. Creation of Oxidized Zirconium Orthopaedic Implants. Zardiackas LD, Kraay MJ, Freese, HL (Eds). American Society for Testing and Materials, West Conshohocken, PA, USA (2006).
  • Sheth NP, Lementowski P, Hunter G, Garino JP. Clinical applications of oxidized zirconium. J. Surg. Orthop. Adv. 17(1), 17–26 (2008).
  • Hobbs LW, Rosen VB, Mangin SP, Treska M, Hunter G. Oxidation microstructures and interfaces in the oxidized zirconium knee. Int. J. Appl. Ceram. Tech. 2(3), 221–246 (2005).
  • Davidson JA, Poggie RA, Mishra AK. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris. Biomed. Mater. Eng. 4(3), 213–229 (1994).
  • Spector BM, Ries MD, Bourne RB, Sauer WS, Long M, Hunter G. Wear performance of ultra-high molecular weight polyethylene on oxidized zirconium total knee femoral components. J. Bone Joint Surg. Am. 83-A(Suppl. 2 Pt. 2), 80–86 (2001).
  • Fisher J, McEwen HM, Tipper JL et al. Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin. Orthop. Relat. Res. 428, 114–119 (2004).
  • Dowson D, Taheri S, Wallbridge N. The role of counterface imperfections in the wear of polyethylene. Wear 119, 277–293 (1987).
  • Hunter G, Jones WM, Spector M. Oxidized Zirconium. Bellemans J, Ries MD, Victor J (Eds). Springer-Verlag, Heidelberg, Germany (2005).
  • Ezzet KA, Hermida JC, Colwell CW Jr, D’Lima DD. Oxidized zirconium femoral components reduce polyethylene wear in a knee wear simulator. Clin. Orthop. Relat. Res. 428, 120–124 (2004).
  • Ries MD, Salehi A, Widding K, Hunter G. Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions. J. Bone Joint Surg. Am. 84-A(Suppl. 2), 129–135 (2002).
  • DesJardins J, Burnikel B, LaBerge M. UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation. Wear 264, 245–256 (2008).
  • Muratoglu OK, Burroughs BR, Bragdon CR, Christensen S, Lozynsky A, Harris WH. Knee simulator wear of polyethylene tibias articulating against explanted rough femoral components. Clin. Orthop. Relat. Res. 428, 108–113 (2004).
  • Muratoglu OK, Ruberti J, Melotti S, Spiegelberg SH, Greenbaum ES, Harris WH. Optical analysis of surface changes on early retrievals of highly cross-linked and conventional polyethylene tibial inserts. J. Arthroplasty 18(7 Suppl. 1), 42–47 (2003).
  • Levesque M, Livingston B, Jones W, Spector M. Scratches on condyle innormal functioning total knee arthroplasty. Trans. Orthop. Res. Soc. 23, 247 (1998).
  • Heyse TJ, Davis J, Haas SB, Chen DX, Wright TM, Laskin RS. Retrieval analysis of femoral zirconium components in total knee arthroplasty preliminary results. J. Arthroplasty 6(3), 445–450 (2010).
  • Casey D, Cottrell J, DiCarlo E, Windsor R, Wright T. PFC knee replacement: osteolytic failures from extreme polyethylene degradation. Clin. Orthop. Relat. Res. 464, 157–163 (2007).
  • Cottrell JM, Townsend E, Lipman J, Sculco TP, Wright TM. Bearing surface design changes affect contact patterns in total knee arthroplasty. Clin. Orthop. Relat. Res. 464, 127–131 (2007).
  • Heyse TJ, Chen DX, Kelly N, Boettner F, Wright TM, Haas SB. Matched-pair total knee arthroplasty retrieval analysis: oxidized zirconium vs. CoCrMo. Knee 18(6), 448–452 (2011).
  • Hui C, Salmon L, Maeno S, Roe J, Walsh W, Pinczewski L. Five-year comparison of oxidized zirconium and cobalt-chromium femoral components in total knee arthroplasty: a randomized controlled trial. J. Bone Joint Surg. Am. 93(7), 624–630 (2011).
  • Kim YH, Kim JS, Huh W, Lee KH. Weight of polyethylene wear particles is similar in TKAs with oxidized zirconium and cobalt-chrome prostheses. Clin. Orthop. Relat. Res. 468(5), 1296–1304 (2010).
  • Bal BS, Greenberg DD, Buhrmester L, Aleto TJ. Primary TKA with a zirconia ceramic femoral component. J. Knee Surg. 19(2), 89–93 (2006).
  • Innocenti M, Civinini R, Carulli C, Matassi F, Villano M. The 5-year results of an oxidized zirconium femoral component for TKA. Clin. Orthop. Relat. Res. 468(5), 1258–1263 (2010).
  • Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J. Bone Joint Surg. Am. 83-A(3), 428–436 (2001).
  • Garrett S, Jacobs N, Yates P, Smith A, Wood D. Differences in metal ion release following cobalt-chromium and oxidized zirconium total knee arthroplasty. Acta Orthop. Belg. 76(4), 513–520 (2010).
  • Lhotka C, Szekeres T, Steffan I, Zhuber K, Zweymüller K. Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements. J. Orthop. Res. 21(2), 189–195 (2003).
  • Bergschmidt P, Bader R, Mittelmeier W. Metal hypersensitivity in total knee arthroplasty: revision surgery using a ceramic femoral component – a case report. Knee 19(2), 144–147 (2012).
  • Dietrich KA, Mazoochian F, Summer B, Reinert M, Ruzicka T, Thomas P. Intolerance reactions to knee arthroplasty in patients with nickel/cobalt allergy and disappearance of symptoms after revision surgery with titanium-based endoprostheses. J. Dtsch. Dermatol. Ges. 7(5), 410–413 (2009).
  • Granchi D, Cenni E, Tigani D, Trisolino G, Baldini N, Giunti A. Sensitivity to implant materials in patients with total knee arthroplasties. Biomaterials 29(10), 1494–1500 (2008).
  • Thomsen M, Rozak M, Thomas P. Pain in a chromium-allergic patient with total knee arthroplasty: disappearance of symptoms after revision with a special surface-coated TKA – a case report. Acta Orthop. 82(3), 386–388 (2011).
  • Bourne RB, Laskin RS, Guerin JS. Ten-year results of the first 100 Genesis II total knee replacement procedures. Orthopedics 30(Suppl. 8), 83–85 (2007).
  • Kovacs P, Davidson JA. Chemical and Electrochemical Aspects of the Biocompatibility of Titanium and its Alloys. Brown SA, Lemons JE (Eds). American Society for Testing and Materials (ASTM STP 1272), West Conshohocken, PA, USA (1996).
  • Davidson JA, Asgian CM, Mishra AK, Kovacs P. Zirconia (ZrO2)-Coated Zirconium-2.5Nb Alloy for Prosthetic Knee Nearing Applications. Yamamuro T, Kokubo T, Nakamura T (Eds). Kobunshi Kankokai, Kyoto, Japan (1992).
  • Sofka CM, Potter HG, Figgie M, Laskin R. Magnetic resonance imaging of total knee arthroplasty. Clin. Orthop. Relat. Res. 406, 129–135 (2003).
  • Harris CA, White LM. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop. Clin. North Am. 37(3), 349–359 (2006).
  • Potter HG, Foo LF. Magnetic resonance imaging of joint arthroplasty. Orthop. Clin. North Am. 37(3), 361–373 (2006).
  • Lee KY, Slavinsky JP, Ries MD, Blumenkrantz G, Majumdar S. Magnetic resonance imaging of in vivo kinematics after total knee arthroplasty. J. Magn. Reson. Imaging 21(2), 172–178 (2005).
  • Guermazi A, Miaux Y, Zaim S, Peterfy CG, White D, Genant HK. Metallic artifacts in MR imaging: effects of main field orientation and strength. Clin. Radiol. 58(4), 322–328 (2003).
  • Raphael B, Haims AH, Wu JS, Katz LD, White LM, Lynch K. MRI comparison of periprosthetic structures around zirconium knee prostheses and cobalt chrome prostheses. AJR. Am. J. Roentgenol. 186(6), 1771–1777 (2006).
  • Hellwege KH, Hellwege AM. Numerical Data and Functional Relationships in Science and Technology – Diamagnetic Susceptibility. Bornstein L (Ed.). Springer-Verlag, Heidelberg, Germany (1986).
  • Fruchart D, Fruchart R, Heritier PL. Numerical Data and Functional Relationships in Science and Technology – Magnetic Properties of Metals. Bornstein L (Ed.). Springer-Verlag, Heidelberg, Germany (1992).
  • Mosher TJ, Davis CM 3rd. Magnetic resonance imaging to evaluate osteolysis around total knee arthroplasty. J. Arthroplasty 21(3), 460–463 (2006).
  • Vessely MB, Frick MA, Oakes D, Wenger DE, Berry DJ. Magnetic resonance imaging with metal suppression for evaluation of periprosthetic osteolysis after total knee arthroplasty. J. Arthroplasty 21(6), 826–831 (2006).
  • Heyse TJ, Chong LR, Davis J, Boettner F, Haas SB, Potter HG. MRI analysis of the component–bone interface after TKA. Knee 19(4), 290–294 (2011).
  • Heyse TJ, Chong LR, Davis J, Boettner F, Haas SB, Potter HG. MRI analysis for rotation of total knee components. Knee doi:10.1016/j.knee.2012.01.003 (2012) (Epub ahead of print).
  • Carpenter RD, Brilhault J, Majumdar S, Ries MD. Magnetic resonance imaging of in vivo patellofemoral kinematics after total knee arthroplasty. Knee 16(5), 332–336 (2009).
  • Kamishima T, Kitamura N, Amemiya M et al. Experimental MR imaging of zirconia ceramic joint implants at 1.5 and 3 T. Clin. Radiol. 65(5), 387–390 (2010).
  • Kop AM, Whitewood C, Johnston DJ. Damage of oxinium femoral heads subsequent to hip arthroplasty dislocation three retrieval case studies. J. Arthroplasty 22(5), 775–779 (2007).
  • Gioe TJ, Sharma A, Tatman P, Mehle S. Do ‘premium’ joint implants add value?: analysis of high cost joint implants in a community registry. Clin. Orthop. Relat. Res. 469(1), 48–54 (2011).
  • Gibbs G. Knee implant recall hits Smith & Nephew. The Guardian, 18th September (2003).
  • Bernstein A, Nöbel D, Mayr HO et al. Inhibition of mineralization by a calcium zirconium phosphate coating. J. Biomed. Mater. Res. Part B Appl. Biomater. 86(2), 422–429 (2008).
  • Göbel F, Ulbricht S, Hein W, Bernstein A. Radiological mid-term results of total knee arthroplasty with femoral components of different materials. Z. Orthop. Unfall. 146(2), 194–199 (2008).
  • Suzuki T, Fujibayashi S, Nakagawa Y, Noda I, Nakamura T. Ability of zirconia double coated with titanium and hydroxyapatite to bond to bone under load-bearing conditions. Biomaterials 27(7), 996–1002 (2006).
  • Kohal RJ, Wolkewitz M, Hinze M, Han JS, Bachle M, Butz F. Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Clin. Oral Implants Res. 20(4), 333–339 (2009).
  • Papannagari R, Hines G, Sprague J. Long-Term Wear Performance of an Advanced Bearing Knee Technology. Presented at: Annual Meeting of the International Society for Technology in Arthroplasty (ISTA). Dubai, UAE, 6–9 October 2010.
  • Barnett PI, Fisher J, Auger DD, Stone MH, Ingham E. Comparison of wear in a total knee replacement under different kinematic conditions. J. Mater. Sci. Mater. Med. 12(10–12), 1039–1042 (2001).
  • Haider H, Garvin K. Rotating platform versus fixed-bearing total knees: an in vitro study of wear. Clin. Orthop. Relat. Res. 466(11), 2677–2685 (2008).
  • Muratoglu OK, Rubash HE, Bragdon CR, Burroughs BR, Huang A, Harris WH. Simulated normal gait wear testing of a highly cross-linked polyethylene tibial insert. J. Arthroplasty 22(3), 435–444 (2007).
  • Muratoglu OK, Bragdon CR, Jasty M, O’Connor DO, Von Knoch RS, Harris WH. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts. J. Arthroplasty 19(7), 887–897 (2004).
  • Walker PS, Blunn GW, Perry JP et al. Methodology for long-term wear testing of total knee replacements. Clin. Orthop. Relat. Res. 372, 290–301 (2000).
  • Beaulé PE, Campbell PA, Walker PS et al. Polyethylene wear characteristics in vivo and in a knee stimulator. J. Biomed. Mater. Res. 60(3), 411–419 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.