90
Views
11
CrossRef citations to date
0
Altmetric
Review

Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4

, , &
Pages 1235-1249 | Published online: 10 Jan 2014

References

  • Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci.98(6), 772–778 (2007).
  • Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene24(39), 6058–6068 (2005).
  • Journo C, Douceron E, Mahieux R. HTLV gene regulation: because size matters, transcription is not enough. Future Microbiol.4(4), 425–440 (2009).
  • Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology2, 17 (2005).
  • Matsuoka M, Jeang KT. Human T-cell leukemia virus type I at age 25: a progress report. Cancer Res.65(11), 4467–4470 (2005).
  • Feuer G, Green PL. Comparative biology of human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2. Oncogene24(39), 5996–6004 (2005).
  • Prince H, Kleinman S, Doyle M, Lee H, Swanson P. Spontaneous lymphocyte proliferation in vitro characterizes both HTLV-I and HTLV-II infection. J. Acquir. Immune Defic. Syndr.3(12), 1199–1200 (1990).
  • Bartman MT, Kaidarova Z, Hirschkorn D et al. Long-term increases in lymphocytes and platelets in human T-lymphotropic virus type II infection. Blood112(10), 3995–4002 (2008).
  • Legros S, Boxus M, Dewulf JF, Dequiedt F, Kettmann R, Twizere JC. Protein–protein interactions and gene expression regulation in HTLV-1 infected cells. Front. Biosci.14, 4138–4148 (2009).
  • Verdonck K, Gonzalez E, Van Dooren S, Vandamme AM, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect. Dis.7(4), 266–281 (2007).
  • Calattini S, Chevalier SA, Duprez R et al. Discovery of a new human T-cell lymphotropic virus (HTLV-3) in central Africa. Retrovirology2, 30 (2005).
  • Calattini S, Chevalier SA, Duprez R et al. Human T-cell lymphotropic virus type 3: complete nucleotide sequence and characterization of the human tax3 protein. J. Virol.80(19), 9876–9888 (2006).
  • Calattini S, Betsem E, Froment A et al. Identification and complete sequence analysis of a new HTLV-3 strain from South Cameroon. AIDS Res. Hum. Retroviruses23(4), 596–596 (2007).
  • Wolfe ND, Heneine W, Carr JK et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA102(22), 7994–7999 (2005).
  • Switzer WM, Qari SH, Wolfe ND, Burke DS, Folks TM, Heneine W. Ancient origin and molecular features of the novel human T-lymphotropic virus type 3 revealed by complete genome analysis. J. Virol.80(15), 7427–7438 (2006).
  • Switzer WM, Salemi M, Qari SH et al. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology6, 9 (2009).
  • Mahieux R, Gessain A. The human HTLV-3 and HTLV-4 retroviruses: new members of the HTLV family. Pathol. Biol. (Paris)57(2), 161–166 (2009).
  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl Acad. Sci. USA77(12), 7415–7419 (1980).
  • Kalyanaraman VS, Sarngadharan MG, Robertguroff M et al. A new subtype of human T-cell leukemia-virus (HTLV-LI) associated with a T-cell variant of hairy-cell leukemia. Science218(4572), 571–573 (1982).
  • Maeda N, Fan H, Yoshikai Y. Oncogenesis by retroviruses: old and new paradigms. Rev. Med. Virol.18(6), 387–405 (2008).
  • Araujo A, Hall WW. Human T-lymphotropic virus type II and neurological disease. Ann. Neurol.56(1), 10–19 (2004).
  • Lowis GW, Sheremata WA, Minagar A. Epidemiologic features of HTLV-II: serologic and molecular evidence. Ann. Epidemiol.12(1), 46–66 (2002).
  • Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med.14(4), 429–436 (2008).
  • Macatonia SE, Cruickshank JK, Rudge P, Knight SC. Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation. AIDS Res. Hum. Retroviruses8(9), 1699–1706 (1992).
  • Koyanagi Y, Itoyama Y, Nakamura N et al.In vivo infection of human T-cell leukemia virus type I in non-T cells. Virology196(1), 25–33 (1993).
  • Hanon E, Stinchcombe JC, Saito M et al. Fratricide among CD8(+) T lymphocytes naturally infected with human T cell lymphotropic virus type I. Immunity13(5), 657–664 (2000).
  • Hishizawa M, Imada K, Kitawaki T, Ueda M, Kadowaki N, Uchiyama T. Depletion and impaired interferon-α-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals. Br. J. Haematol.125(5), 568–575 (2004).
  • Asquith B, Mosley AJ, Barfield A et al. A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J. Gen. Virol.86(Pt 5), 1515–1523 (2005).
  • Richardson JH, Edwards AJ, Cruickshank JK, Rudge P, Dalgleish AG. In vivo cellular tropism of human T-cell leukemia virus type 1. J. Virol.64(11), 5682–5687 (1990).
  • Tozser J, Weber IT. The protease of human T-cell leukemia virus type-1 is a potential therapeutic target. Curr. Pharm. Des.13(12), 1285–1294 (2007).
  • Boross P, Bagossi P, Weber IT, Tozser J. Drug targets in human T-lymphotropic virus type 1 (HTLV-1) infection. Infect. Disord. Drug Targets9(2), 159–171 (2009).
  • Manel N, Battini JL, Taylor N, Sitbon M. HTLV-1 tropism and envelope receptor. Oncogene24(39), 6016–6025 (2005).
  • Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell115(4), 449–459 (2003).
  • Manel N, Battini JL, Sitbon M. Human T cell leukemia virus envelope binding and virus entry are mediated by distinct domains of the glucose transporter GLUT1. J. Biol. Chem.280(32), 29025–29029 (2005).
  • Jin Q, Agrawal L, VanHorn-Ali Z, Alkhatib G. Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: evidence using antibodies specific to the receptor’s large extracellular domain. Virology349(1), 184–196 (2006).
  • Kinet S, Swainson L, Lavanya M et al. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells. Retrovirology4, 31 (2007).
  • Takenouchi N, Jones KS, Lisinski I et al. GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. J. Virol.81(3), 1506–1510 (2007).
  • Jones KS, Fugo K, Petrow-Sadowski C et al. Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 use different receptor complexes to enter T cells. J. Virol.80(17), 8291–8302 (2006).
  • Jones KS, Huang YK, Chevalier SA et al. The receptor complex associated with human T-cell lymphotropic virus type 3 (HTLV-3) Env-mediated binding and entry is distinct from, but overlaps with, the receptor complexes of HTLV-1 and HTLV-2. J. Virol.83(10), 5244–5255 (2009).
  • Pinon JD, Klasse PJ, Jassal SR et al. Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J. Virol.77(18), 9922–9930 (2003).
  • Jones KS, Petrow-Sadowski C, Bertolette DC, Huang Y, Ruscetti FW. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J. Virol.79(20), 12692–12702 (2005).
  • Lambert S, Bouttier M, Vassy R et al. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood113(21), 5176–5185 (2009).
  • Ghez D, Lepelletier Y, Lambert S et al. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J. Virol.80(14), 6844–6854 (2006).
  • Sagara Y, Ishida C, Inoue Y, Shiraki H, Maeda Y. 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J. Virol.72(1), 535–541 (1998).
  • Jin Q, Agrawal L, Vanhorn-Ali Z, Alkhatib G. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1. Virology353(1), 99–110 (2006).
  • Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology5, 76 (2008).
  • Kashanchi F, Brady JN. Transcriptional and post-transcriptional gene regulation of HTLV-1. Oncogene24(39), 5938–5951 (2005).
  • Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene24(39), 6005–6015 (2005).
  • Hasegawa H, Sawa H, Lewis MJ et al. Thymus-derived leukemia-lymphoma in mice transgenic for the tax gene of human T-lymphotropic virus type I. Nat. Med.12(4), 466–472 (2006).
  • Younis I, Green PL. The human T-cell leukemia virus Rex protein. Front. Biosci.10, 431–445 (2005).
  • Baydoun HH, Bellon M, Nicot C. HTLV-1 yin and yang: Rex and p30 master regulators of viral mRNA trafficking. AIDS Rev.10(4), 195–204 (2008).
  • Ye J, Silverman L, Lairmore MD, Green PL. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro. Blood102(12), 3963–3969 (2003).
  • Nicot C, Harrod RL, Ciminale V, Franchini G. Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene24(39), 6026–6034 (2005).
  • Franchini G, Mulloy JC, Koralnik IJ et al. The human T-cell leukemia/lymphotropic virus type I p12I protein cooperates with the E5 oncoprotein of bovine papillomavirus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J. Virol.67(12), 7701–7704 (1993).
  • Mulloy JC, Crownley RW, Fullen J, Leonard WJ, Franchini G. The human T-cell leukemia/lymphotropic virus type 1 p12I proteins bind the interleukin-2 receptor beta and gammac chains and affects their expression on the cell surface. J. Virol.70(6), 3599–3605 (1996).
  • Johnson JM, Nicot C, Fullen J et al. Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12(I) protein. J. Virol.75(13), 6086–6094 (2001).
  • Ding W, Albrecht B, Luo R et al. Endoplasmic reticulum and cis-Golgi localization of human T-lymphotropic virus type 1 p12(I): association with calreticulin and calnexin. J. Virol.75(16), 7672–7682 (2001).
  • Ding W, Albrecht B, Kelley RE et al. Human T-cell lymphotropic virus type 1 p12(I) expression increases cytoplasmic calcium to enhance the activation of nuclear factor of activated T cells. J. Virol.76(20), 10374–10382 (2002).
  • Fukumoto R, Dundr M, Nicot C et al. Inhibition of T-cell receptor signal transduction and viral expression by the linker for activation of T cells-interacting p12(I) protein of human T-cell leukemia/lymphoma virus type 1. J. Virol.81(17), 9088–9099 (2007).
  • Kim SJ, Nair AM, Fernandez S, Mathes L, Lairmore MD. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. J. Immunol.176(9), 5463–5470 (2006).
  • Banerjee P, Feuer G, Barker E. Human T-cell leukemia virus type 1 (HTLV-1) p12I down-modulates ICAM-1 and -2 and reduces adherence of natural killer cells, thereby protecting HTLV-1-infected primary CD4+ T cells from autologous natural killer cell-mediated cytotoxicity despite the reduction of major histocompatibility complex class I molecules on infected cells. J. Virol.81(18), 9707–9717 (2007).
  • Fukumoto R, Andresen V, Bialuk I et al.In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein. Blood113(16), 3726–3734 (2009).
  • Bartoe JT, Albrecht B, Collins ND et al. Functional role of pX open reading frame II of human T-lymphotropic virus type 1 in maintenance of viral loads in vivo. J. Virol.74(3), 1094–1100 (2000).
  • Collins ND, Newbound GC, Albrecht B, Beard JL, Ratner L, Lairmore MD. Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood91(12), 4701–4707 (1998).
  • Silverman LR, Phipps AJ, Montgomery A, Ratner L, Lairmore MD. Human T-cell lymphotropic virus type 1 open reading frame II-encoded p30II is required for in vivo replication: evidence of in vivo reversion. J. Virol.78(8), 3837–3845 (2004).
  • Nicot C, Dundr M, Johnson JM et al. HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat. Med.10(2), 197–201 (2004).
  • Younis I, Boris-Lawrie K, Green PL. Human T-cell leukemia virus open reading frame II encodes a posttranscriptional repressor that is recruited at the level of transcription. J. Virol.80(1), 181–191 (2006).
  • Younis I, Khair L, Dundr M, Lairmore MD, Franchini G, Green PL. Repression of human T-cell leukemia virus type 1 and type 2 replication by a viral mRNA-encoded posttranscriptional regulator. J. Virol.78(20), 11077–11083 (2004).
  • Yamamoto B, Li M, Kesic M, Younis I, Lairmore MD, Green PL. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo. Retrovirology5, 38 (2008).
  • Zhang W, Nisbet JW, Albrecht B et al. Human T-lymphotropic virus type 1 p30(II) regulates gene transcription by binding CREB binding protein/p300. J. Virol.75(20), 9885–9895 (2001).
  • Lairmore MD, Albrecht B, D’Souza C et al.In vitro and in vivo functional analysis of human T cell lymphotropic virus type 1 pX open reading frames I and II. AIDS Res. Hum. Retroviruses16(16), 1757–1764 (2000).
  • Zhang W, Nisbet JW, Bartoe JT, Ding W, Lairmore MD. Human T-lymphotropic virus type 1 p30(II) functions as a transcription factor and differentially modulates CREB-responsive promoters. J. Virol.74(23), 11270–11277 (2000).
  • Awasthi S, Sharma A, Wong K et al. A human T-cell lymphotropic virus type 1 enhancer of Myc transforming potential stabilizes Myc-TIP60 transcriptional interactions. Mol. Cell. Biol.25(14), 6178–6198 (2005).
  • Sinha-Datta U, Datta A, Ghorbel S, Dodon MD, Nicot C. Human T-cell lymphotrophic virus type I rex and p30 interactions govern the switch between virus latency and replication. J. Biol. Chem.282(19), 14608–14615 (2007).
  • D’Agostino DM, Ranzato L, Arrigoni G et al. Mitochondrial alterations induced by the p13II protein of human T-cell leukemia virus type 1. Critical role of arginine residues. J. Biol. Chem.277(37), 34424–34433 (2002).
  • Silic-Benussi M, Cannizzaro E, Venerando A et al. Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. Biochim. Biophys. Acta1787(7), 947–954 (2009).
  • Silic-Benussi M, Cavallari I, Zorzan T et al. Suppression of tumor growth and cell proliferation by p13II, a mitochondrial protein of human T cell leukemia virus type 1. Proc. Natl Acad. Sci. USA101(17), 6629–6634 (2004).
  • Hiraragi H, Michael B, Nair A, Silic-Benussi M, Ciminale V, Lairmore M. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13II sensitizes Jurkat T cells to Ras-mediated apoptosis. J. Virol.79(15), 9449–9457 (2005).
  • Saggioro D, Barp S, Chieco-Bianchi L. Block of a mitochondrial-mediated apoptotic pathway in Tax-expressing murine fibroblasts. Exp. Cell Res.269(2), 245–255 (2001).
  • Trevisan R, Daprai L, Acquasaliente L, Ciminale V, Chieco-Bianchi L, Saggioro D. Relevance of CREB phosphorylation in the anti-apoptotic function of human T-lymphotropic virus type 1 Tax protein in serum-deprived murine fibroblasts. Exp. Cell Res.299(1), 57–67 (2004).
  • Hiraragi H, Kim SJ, Phipps AJ et al. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13(II) is required for viral infectivity in vivo. J. Virol.80(7), 3469–3476 (2006).
  • Boya P, Pauleau AL, Poncet D, Gonzalez-Polo RA, Zamzami N, Kroemer G. Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta1659(2–3), 178–189 (2004).
  • D’Agostino DM, Bernardi P, Chieco-Bianchi L, Ciminale V. Mitochondria as functional targets of proteins coded by human tumor viruses. Adv. Cancer Res.94, 87–142 (2005).
  • Matsuoka M, Green PL. The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology6, 71 (2009).
  • Arnold J, Yamamoto B, Li M et al. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood107(10), 3976–3982 (2006).
  • Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J. Virol.76(24), 12813–12822 (2002).
  • Larocca D, Chao LA, Seto MH, Brunck TK. Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem. Biophys. Res. Commun.163(2), 1006–1013 (1989).
  • Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer7(4), 270–280 (2007).
  • Murata K, Hayashibara T, Sugahara K et al. A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J. Virol.80(5), 2495–2505 (2006).
  • Nomura M, Ohashi T, Nishikawa K et al. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model. J. Virol.78(8), 3827–3836 (2004).
  • Lemasson I, Lewis MR, Polakowski N et al. Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J. Virol.81(4), 1543–1553 (2007).
  • Mesnard JM, Barbeau B, Devaux C. HBZ, a new important player in the mystery of adult T-cell leukemia. Blood108(13), 3979–3982 (2006).
  • Matsumoto J, Ohshima T, Isono O, Shimotohno K. HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene24(6), 1001–1010 (2005).
  • Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM. The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J. Biol. Chem.278(44), 43620–43627 (2003).
  • Thebault S, Basbous J, Hivin P, Devaux C, Mesnard JM. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett.562(1–3), 165–170 (2004).
  • Hivin P, Basbous J, Raymond F et al. The HBZ-SP1 isoform of human T-cell leukemia virus type I represses JunB activity by sequestration into nuclear bodies. Retrovirology4, 14 (2007).
  • Kuhlmann AS, Villaudy J, Gazzolo L, Castellazzi M, Mesnard JM, Dodon MD. HTLV-I HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology4, 92 (2007).
  • Mori N, Fujii M, Iwai K et al. Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood95(12), 3915–3921 (2000).
  • Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA103(3), 720–725 (2006).
  • Saito M, Matsuzaki T, Satou Y et al.In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Retrovirology6, 19 (2009).
  • Liegeois F, Lafay B, Switzer WM et al. Identification and molecular characterization of new STLV-1 and STLV-3 strains in wild-caught nonhuman primates in Cameroon. Virology371(2), 405–417 (2008).
  • Sintasath DM, Wolfe ND, Lebreton M et al. Simian T-lymphotropic virus diversity among nonhuman primates, Cameroon. Emerg. Infect. Dis.15(2), 175–184 (2009).
  • Van Dooren S, Meertens L, Lemey P, Gessain A, Vandamme AM. Full-genome analysis of a highly divergent simian T-cell lymphotropic virus type 1 strain in Macaca arctoides. J. Gen. Virol.86(Pt 7), 1953–1959 (2005).
  • Nerrienet E, Meertens L, Kfutwah A, Foupouapouognigni Y, Gessain A. Molecular epidemiology of simian T-lymphotropic virus (STLV) in wild-caught monkeys and apes from Cameroon: a new STLV-1, related to human T-lymphotropic virus subtype F, in a Cercocebus agilis. J. Gen. Virol.82(Pt 12), 2973–2977 (2001).
  • Leendertz FH, Boesch C, Junglen S, Pauli G, Ellerbrok H. Characterization of a new simian T-lymphocyte virus type 1 (STLV-1) in a wild living chimpanzee (Pan troglodytes verus) from Ivory Coast: evidence of a new STLV-1 group? AIDS Res. Hum. Retroviruses19(3), 255–258 (2003).
  • Calattini S, Betsem E, Bassot S et al. New strain of human T lymphotropic virus (HTLV) type 3 in a Pygmy from Cameroon with peculiar HTLV serologic results. J. Infect. Dis.199(4), 561–564 (2009).
  • Besson G, Kazanji M. One-step, multiplex, real-time PCR assay with molecular beacon probes for simultaneous detection, differentiation, and quantification of human T-cell leukemia virus types 1, 2, and 3. J. Clin. Microbiol.47(4), 1129–1135 (2009).
  • Duong YT, Jia H, Lust JA et al. Absence of evidence of HTLV-3 and HTLV-4 in patients with large granular lymphocyte (LGL) leukemia. AIDS Res. Hum. Retroviruses24(12), 1503–1505 (2008).
  • Endo K, Hirata A, Iwai K et al. Human T-cell leukemia virus type 2 (HTLV-2) Tax protein transforms a rat fibroblast cell line but less efficiently than HTLV-1 Tax. J. Virol.76(6), 2648–2653 (2002).
  • Chevalier SA, Meertens L, Pise-Masison C et al. The tax protein from the primate T-cell lymphotropic virus type 3 is expressed in vivo and is functionally related to HTLV-1 Tax rather than HTLV-2 Tax. Oncogene25(32), 4470–4482 (2006).
  • Courgnaud V, Van Dooren S, Liegeois F et al. Simian T-cell leukemia virus (STLV) infection in wild primate populations in Cameroon: evidence for dual STLV type 1 and type 3 infection in agile mangabeys (Cercocebus agilis). J. Virol.78(9), 4700–4709 (2004).
  • Rousset R, Fabre S, Desbois C, Bantignies F, Jalinot P. The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene16(5), 643–654 (1998).
  • Higuchi M, Tsubata C, Kondo R et al. Cooperation of NF-κB2/p100 activation and the PDZ domain binding motif signal in human T-cell leukemia virus type 1 (HTLV-1) Tax1 but not HTLV-2 Tax2 is crucial for interleukin-2-independent growth transformation of a T-cell line. J. Virol.81(21), 11900–11907 (2007).
  • Tsubata C, Higuchi M, Takahashi M et al. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein is essential for the interleukin 2 independent growth induction of a T-cell line. Retrovirology2, 46 (2005).
  • Xie L, Yamamoto B, Haoudi A, Semmes OJ, Green PL. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood107(5), 1980–1988 (2006).
  • Halin M, Douceron E, Clerc I et al. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classical bZIP domain but still inhibits Tax2-mediated transcription. Blood114(12), 2427–2438 (2009).
  • Chevalier SA, Ko NL, Calattini S et al. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone. J. Virol.82(13), 6747–6752 (2008).
  • Chevalier SA, Walic M, Calattini S et al. Construction and characterization of a full-length infectious simian T-cell lymphotropic virus type 3 molecular clone. J. Virol.81(12), 6276–6285 (2007).
  • Lieu YK, Kumar A, Pajerowski AG, Rogers TJ, Reddy EP. Requirement of c-Myb in T cell development and in mature T cell function. Proc. Natl Acad. Sci. USA101(41), 14853–14858 (2004).
  • Eklund EA. The role of HOX genes in malignant myeloid disease. Curr. Opin. Hematol.14(2), 85–89 (2007).
  • Eklund EA. The role of HOX genes in myeloid leukemogenesis. Curr. Opin. Hematol.13(2), 67–73 (2006).
  • Kim FJ, Manel N, Garrido EN, Valle C, Sitbon M, Battini JL. HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding. Retrovirology1, 41 (2004).
  • Slattery JP, Franchini G, Gessain A. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res.9(6), 525–540 (1999).
  • Antia R, Regoes RR, Koella JC, Bergstrom CT. The role of evolution in the emergence of infectious diseases. Nature426(6967), 658–661 (2003).
  • Wolfe ND, Prosser TA, Carr JK et al. Exposure to nonhuman primates in rural Cameroon. Emerg. Infect. Dis.10(12), 2094–2099 (2004).
  • Wolfe ND, Switzer WM, Carr JK et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet363(9413), 932–937 (2004).
  • Wolfe ND, Daszak P, Kilpatrick AM, Burke DS. Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg. Infect. Dis.11(12), 1822–1827 (2005).
  • Martinez-Cajas JL, Wainberg MA. Antiretroviral therapy – optimal sequencing of therapy to avoid resistance. Drugs68(1), 43–72 (2008).
  • Wattel E, Vartanian JP, Pannetier C, Wain-Hobson S. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol.69(5), 2863–2868 (1995).
  • Igakura T, Stinchcombe JC, Goon PKC et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science299(5613), 1713–1716 (2003).
  • Jolly C, Sattentau QJ. Retroviral spread by induction of virological synapses. Traffic5(9), 643–650 (2004).
  • Majorovits E, Nejmeddine M, Tanaka Y, Taylor GP, Fuller SD, Bangham CR. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS One3(5), e2251 (2008).
  • Oh U, Jacobson S. Treatment of HTLV-I-associated myelopathy/tropical spastic paraparesis: toward rational targeted therapy. Neurol. Clin.26(3), 781–797, ix–x (2008).
  • Nakamura T. HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP): the role of HTLV-I-infected Th1 cells in the pathogenesis, and therapeutic strategy. Folia Neuropathol.47(2), 182–194 (2009).
  • Tsukasaki K, Hermine O, Bazarbachi A et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J. Clin. Oncol.27(3), 453–459 (2009).
  • Kchour G, Tarhini M, Kooshyar MM et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood113(26), 6528–6532 (2009).
  • Garcia-Lerma JG, Nidtha S, Heneine W. Susceptibility of human T cell leukemia virus type 1 to reverse-transcriptase inhibitors: evidence for resistance to lamivudine. J. Infect. Dis.184(4), 507–510 (2001).
  • Hill SA, Lloyd PA, McDonald S, Wykoff J, Derse D. Susceptibility of human T cell leukemia virus type I to nucleoside reverse transcriptase inhibitors. J. Infect. Dis.188(3), 424–427 (2003).
  • Murakami J, Nagai N, Shigemasa K, Ohama K. Inhibition of telomerase activity and cell proliferation by a reverse transcriptase inhibitor in gynaecological cancer cell lines. Eur. J. Cancer35(6), 1027–1034 (1999).
  • Yamaguchi T, Takahashi H, Jinmei H, Takayama Y, Saneyoshi M. Inhibition of vertebrate telomerases by the triphosphate derivatives of some biologically active nucleosides. Nucleosides Nucleotides Nucleic Acids22(5–8), 1575–1577 (2003).
  • Falchetti A, Franchi A, Bordi C et al. Azidothymidine induces apoptosis and inhibits cell growth and telomerase activity of human parathyroid cancer cells in culture. J. Bone Miner. Res.20(3), 410–418 (2005).
  • Hara T, Matsumura-Arioka Y, Ohtani K, Nakamura M. Role of human T-cell leukemia virus type I Tax in expression of the human telomerase reverse transcriptase (hTERT) gene in human T-cells. Cancer Science99(6), 1155–1163 (2008).
  • Bellon M, Nicot C. Central role of PI3K in transcriptional activation of hTERT in HTLV-I-infected cells. Blood112(7), 2946–2955 (2008).
  • Bellon M, Nicot C. Telomerase: a crucial player in HTLV-I-induced human T-cell leukemia. Cancer Genomics Proteomics4(1), 21–25 (2007).
  • Feng X, Heyden NV, Ratner L. a interferon inhibits human T-cell leukemia virus type 1 assembly by preventing Gag interaction with rafts. J. Virol.77(24), 13389–13395 (2003).
  • Feng X, Ratner L. Human T-cell leukemia virus type 1 blunts signaling by interferon alpha. Virology374(1), 210–216 (2008).
  • Bazarbachi A, El-Sabban ME, Nasr R et al. Arsenic trioxide and interferon-α synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood93(1), 278–283 (1999).
  • El-Sabban ME, Nasr R, Dbaibo G et al. Arsenic-interferon-α-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-k B activation. Blood96(8), 2849–2855 (2000).
  • Nasr R, Rosenwald A, El-Sabban ME et al. Arsenic/interferon specifically reverses 2 distinct gene networks critical for the survival of HTLV-1-infected leukemic cells. Blood101(11), 4576–4582 (2003).
  • Chiacchio U, Balestrieri E, Macchi B et al. Synthesis of phosphonated carbocyclic 2´-oxa-3´-aza-nucleosides: novel inhibitors of reverse transcriptase. J. Med. Chem.48(5), 1389–1394 (2005).
  • Chiacchio U, Rescifina A, Iannazzo D et al. Phosphonated carbocyclic 2´-oxa-3´-azanucleosides as new antiretroviral agents. J. Med. Chem.50(15), 3747–3750 (2007).
  • Balestrieri E, Matteucci C, Ascolani A et al. Effect of phosphonated carbocyclic 2´-oxa-3´-aza-nucleoside on human T-cell leukemia virus type 1 infection in vitro. Antimicrob. Agents Chemother.52(1), 54–64 (2008).
  • Tozser J, Oroszlan S. Proteolytic events of HIV-1 replication as targets for therapeutic intervention. Curr. Pharm. Des.9(22), 1803–1815 (2003).
  • Li M, Laco GS, Jaskolski M et al. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc. Natl Acad. Sci. USA102(51), 18332–18337 (2005).
  • Pettit SC, Sanchez R, Smith T, Wehbie R, Derse D, Swanstrom R. HIV type 1 protease inhibitors fail to inhibit HTLV-I Gag processing in infected cells. AIDS Res. Hum. Retroviruses14(11), 1007–1014 (1998).
  • Bagossi P, Kadas J, Miklossy G, Boross P, Weber IT, Tozser J. Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J. Virol. Methods119(2), 87–93 (2004).
  • Nguyen JT, Zhang M, Kumada HO et al. Truncation and non-natural amino acid substitution studies on HTLV-I protease hexapeptidic inhibitors. Bioorg. Med. Chem. Lett.18(1), 366–370 (2008).
  • Zhang M, Nguyen JT, Kumada HO et al. Locking the two ends of tetrapeptidic HTLV-I protease inhibitors inside the enzyme. Bioorg. Med. Chem.16(14), 6880–6890 (2008).
  • Zhang M, Nguyen JT, Kumada HO et al. Synthesis and activity of tetrapeptidic HTLV-I protease inhibitors possessing different P3-cap moieties. Bioorg. Med. Chem.16(10), 5795–5802 (2008).
  • Kadas J, Weber IT, Bagossi P et al. Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell leukemia virus type 1 protease. J. Biol. Chem.279(26), 27148–27157 (2004).
  • Feher A, Weber IT, Bagossi P et al. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur. J. Biochem.269(16), 4114–4120 (2002).
  • Rabaaoui S, Zouhiri F, Lancon A, Leh H, d’Angelo J, Wattel E. Inhibitors of strand transfer that prevent integration and inhibit human T-cell leukemia virus type 1 early replication. Antimicrob. Agents Chemother.52(10), 3532–3541 (2008).
  • Grobler JA, Stillmock K, Hu B et al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl Acad. Sci. USA99(10), 6661–6666 (2002).
  • Semenova EA, Johnson AA, Marchand C, Pommier Y. Integration of human immunodeficiency virus as a target for antiretroviral therapy. Curr. Opin. HIV AIDS1(5), 380–387 (2006).
  • Pommier Y, Johnson AA, Marchand C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov.4(3), 236–248 (2005).
  • Snasel J, Krejcik Z, Jencova V et al. Integrase of Mason-Pfizer monkey virus. FEBS J.272(1), 203–216 (2005).
  • Kobe B, Center RJ, Kemp BE, Poumbourios P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc. Natl Acad. Sci. USA96(8), 4319–4324 (1999).
  • Pinon JD, Kelly SM, Price NC, Flanagan JU, Brighty DW. An antiviral peptide targets a coiled-coil domain of the human T-cell leukemia virus envelope glycoprotein. J. Virol.77(5), 3281–3290 (2003).
  • Mirsaliotis A, Lamb D, Brighty DW. Nonhelical leash and α-helical structures determine the potency of a peptide antagonist of human T-cell leukemia virus entry. J. Virol.82(10), 4965–4973 (2008).
  • Lamb D, Mirsaliotis A, Kelly SM, Brighty DW. Basic residues are critical to the activity of peptide inhibitors of human T cell leukemia virus type 1 entry. J. Biol. Chem.284(10), 6575–6584 (2009).
  • Yasunaga J, Matsuoka M. Human T-cell leukemia virus type I induces adult T-cell leukemia: from clinical aspects to molecular mechanisms. Cancer Control14(2), 133–140 (2007).
  • Takeda S, Maeda M, Morikawa S et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int. J. Cancer109(4), 559–567 (2004).
  • Maeda N, Kawamura T, Hoshino H et al. Inhibition of human T-cell leukemia virus type 1 replication by antisense env oligodeoxynucleotide. Biochem. Biophys. Res. Commun.243(1), 109–112 (1998).
  • Akimoto M, Kozako T, Sawada T et al. Anti-HTLV-1 Tax antibody and Tax-specific cytotoxic T lymphocyte are associated with a reduction in HTLV-1 proviral load in asymptomatic carriers. J. Med. Virol.79(7), 977–986 (2007).
  • Ozaki A, Arima N, Matsushita K et al. Cyclosporin A inhibits HTLV-I tax expression and shows anti-tumor effects in combination with VP-16. J. Med. Virol.79(12), 1906–1913 (2007).
  • Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics20(3), 426–427 (2004).
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight choice. Nucleic Acids Res.22(22), 4673–4680 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.