1,136
Views
17
CrossRef citations to date
0
Altmetric
Editorial

Problems and hopes in the development of drugs targeting the fungal cell wall

&
Pages 359-364 | Published online: 10 Jan 2014

References

  • Latgé JP. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol.66, 279–290 (2007).
  • Schneider T, Sahl HG. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol.300(2–3), 161–169 (2009).
  • Douglas CM, D’Ippolito JA, Shei GJ et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-β-D-glucan synthase inhibitors. Antimicrob. Agents Chemother.41, 2471–2479 (1997).
  • Sudoh M, Yamazaki T, Masubuchi K et al. Identification of a novel inhibitor specific to the fungal chitin synthase. Inhibition of chitin synthase 1 arrests the cell growth, but inhibition of chitin synthase 1 and 2 is lethal in the pathogenic fungus Candida albicans. J. Biol. Chem.275, 32901–32905 (2000).
  • Hiramoto F, Nomura N, Furumai T, Igarashi Y, Oki T. Pradimicin resistance of yeast is caused by a mutation of the putative N-glycosylation sites of osmosensor protein Sln1. Biosci. Biotechnol. Biochem.69, 238–241 (2005).
  • Yeager AR, Finney NS. The first direct evaluation of the two-active site mechanism for chitin synthase. J. Org. Chem.69, 613–618 (2004).
  • Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet. Biol.47(2), 117–126 (2010).
  • Rolli E, Ragni E, Calderon J, Porello S, Fascio U, Popolo L. Immobilization of the glycosylphosphatidylinositol-anchored Gas1 protein into the chitin ring and septum is required for proper morphogenesis in yeast. Mol. Biol. Cell20, 4856–4870 (2009).
  • Gastebois A. Protéines ancrées à la membrane plasmique par l’intermédiare d’un glycosylphosphatidylinositol (GPI) et modification des β (1,3) glucans chez Aspergillus fumigatus. PhD thesis. Université Paris VI, Pierre et Marie Curie, Ecole Doctorale B2M, Paris, France (2009).
  • Mouyna I, Morelle W, Vai M et al. Deletion of GEL2 encoding for a β (1–3) glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol. Microbiol.56, 1675–1688 (2005).
  • Sekiya-Kawasaki M, Abe M, Saka A et al. Dissection of upstream regulatory components of the Rho1p effector, 1,3-β-glucan synthase, in Saccharomyces cerevisiae. Genetics162, 663–676 (2002).
  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog.4, e1000040 (2008).
  • Damveld RA, Franken A, Arentshorst M et al. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis. Genetics178, 873–88 (2008)
  • Fortwendel JR, Juvvadi PR, Pinchai N et al. Differential effects of inhibiting chitin and 1,3-{β}-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob. Agents Chemother.53, 476–482 (2009).
  • Stevens DA. Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens. Antimicrob. Agents Chemother.44, 547–548 (2000).
  • Steinbach WJ, Cramer RA Jr, Perfect BZ et al. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob. Agents Chemother.51, 2979–2981 (2007).
  • Cassone A. Fungal vaccines: real progress from real challenges. Lancet Infect. Dis.8, 114–124 (2008).
  • Grimme SJ, Colussi PA, Taron CH, Orlean P. Deficiencies in the essential Smp3 mannosyltransferase block glycosylphosphatidylinositol assembly and lead to defects in growth and cell wall biogenesis in Candida albicans. Microbiology150, 3115–3128 (2004).
  • Fontaine T, Magnin T, Melhert A, Lamont D, Latgé JP, Ferguson MA. Structures of the glycosylphosphatidylinositol membrane anchors from Aspergillus fumigatus membrane proteins. Glycobiology13, 169–177 (2003).
  • Mommaerts V, Sterk G, Smagghe G. Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manag. Sci.62, 752–758 (2006).
  • Fontaine T, Simenel C, Dubreucq C et al. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem.275, 41528 (2000).
  • Mora-Montes HM, Ponce-Noyola P, Villagomez-Castro JC, Gow NA, Flores-Carreon A, Lopez-Romero E. Protein glycosylation in Candida. Future Microbiol.4, 1167–1183 (2009).
  • Willer T, Brandl M, Sipiczki M, Strahl S. Protein O-mannosylation is crucial for cell wall integrity, septation and viability in fission yeast. Mol. Microbiol.57, 156–170 (2005).
  • Orchard MG, Neuss JC, Galley CM et al. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg. Med. Chem. Lett.14, 3975–3978 (2004).
  • Yanagisawa A, Bouchet C, Quijano-Roy S et al. POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur. J. Med. Genet.52, 201–206 (2009).
  • Kitagaki H, Wu H, Shimoi H, Ito K. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol.46, 1011–1022 (2002).
  • Maligie MA, Selitrennikoff CP. Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob. Agents Chemother.49, 2851–2856 (2005).
  • Cornely OA. Aspergillus to Zygomycetes: causes, risk factors, prevention, and treatment of invasive fungal infections. Infection36, 296–313 (2008).
  • Denning DW. Echinocandin antifungal drugs. Lancet362, 1142–1151 (2003).
  • Beauvais A, Maubon D, Park S et al. Two α (1–3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol.71, 1531–1538 (2005).
  • Kitamura A, Someya K, Hata M, Nakajima R, Takemura M. Discovery of a small-molecule inhibitor of {β}-1,6-glucan synthesis. Antimicrob. Agents Chemother.53, 670–677 (2009).
  • Wiederhold NP. Paradoxical echinocandin activity: a limited in vitro phenomenon? Med. Mycol.47(Suppl. 1), S369–S375 (2009).
  • Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu. Rev. Microbiol.63, 223–247 (2009).
  • Larsen RA, Pappas PG, Perfect J et al. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob. Agents Chemother.49, 952–958 (2005).
  • Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res.9, 1029–1050 (2009).
  • Arendrup MC, Perkhofer S, Howard SJ et al. Establishing in vitro – in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob. Agents Chemother.52, 3504–3511 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.