157
Views
11
CrossRef citations to date
0
Altmetric
Review

Hantavirus protein interactions regulate cellular functions and signaling responses

&
Pages 33-47 | Published online: 10 Jan 2014

References

  • Johnson KM. Hantaviruses: history and overview. Curr. Top. Microbiol. Immunol.256, 1–14 (2001).
  • Vapalahti O, Mustonen J, Lundkvist Å, Henttonen H, Plyusnin A, Vaheri A. Hantavirus infection in Europe. Lancet Infect. Dis.3(10), 653–661 (2003).
  • Schönrich G, Rang A, Lütteke N, Raftery MJ, Charbonnel N, Ulrich RG. Hantavirus-induced immunity in rodent reservoirs and humans. Immunol. Rev.225(1), 163–189 (2008).
  • Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antiviral Res.78(1), 162–169 (2008).
  • Bi Z, Formenty PB, Roth CE. Hantavirus infection: a review and global update. J. Infect. Dev. Ctries2(1), 3–23 (2008).
  • Heyman P, Vaheri A, Lundkvist Å, Avsic-Zupanc T. Hantavirus infections in Europe: from virus carriers to a major public-health problem. Expert Rev. Anti Infect. Ther.7(2), 205–217 (2009).
  • Chen CC, Pei KJ, Yang CM et al. A possible case of hantavirus infection in a Borneo orangutan and its conservation implication. J. Med. Primatol.DOI: 10.1111/j.1600-0684.2010.00442.x (2010) (Epub ahead of print).
  • Mertens M, Essbauer SS, Rang A et al. Non-human primates in outdoor enclosures: risk for infection with rodent-borne hantaviruses. Vet. Microbiol.DOI: 10.1016/j.vetmic.2010.07.018 (2010) (Epub ahead of print).
  • Easterbrook JD, Klein SL. Immunological mechanism mediating hantavirus persistence in rodent reservoirs. PLoS Pathog.4(11), e1000172 (2008).
  • Olsson GE, Leirs H, Henttonen H. Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis.10(6), 549–561 (2010).
  • Goldsmith CS, Eliott LH, Peters CJ, Zaki SR. Ultrastructural charachteristics of Sin nombre virus, causative agent of hantavirus pulmonary syndrome. Arch. Virol.140(12), 2107–2122 (1995).
  • Jääskeläinen KM, Kaukinen P, Minskaya ES et al. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-β promoter. J. Med. Virol.79(10), 1527–1536 (2007).
  • Jonsson CB, Schmaljohn CS. Replication of hantaviruses. Curr. Top. Microbiol. Immunol.256, 15–32 (2001).
  • Hardestam J, Klingström J, Mattsson K, Lundkvist Å. HFRS causing hantaviruses do not induce apoptosis in confluent Vero E6 and A-549 cells. J. Med. Virol.76(2), 234–240 (2005).
  • Wells RM, Sosa Estani S, Yadon ZE et al. An unusual hantavirus outbreak in southern Argentina: person-to-person transmission? Emerg. Infect. Dis.3(2), 171–174 (1997).
  • Padula PJ, Edelstein A, Miguel SD, Lopez NM, Rossi CM, Rabinovich RD. Hantavirus pulmonary syndrome outbreak in Argentina: molecular evidence for person-to-person transmission of Andes virus. Virology241(2), 323–330 (1998).
  • Martinez VP, Bellomo C, San Juan J et al. Person-to-person transmission of Andes virus. Emerg. Infect. Dis.11(12), 1848–1853 (2005).
  • Montgomery JM, Ksiazek TG, Khan AS. Hantavirus pulmonary syndrome: the sound of a mouse roaring. J. Infect. Dis.195(11), 1553–1555 (2007).
  • Ferres M, Vial P, Marco C et al. Prospective evaluation of household contacts of persons with hantavirus cardiopulmonary syndrome in Chile. J. Infect. Dis.195(11), 1563–1571 (2007).
  • Sinisalo M, Vapalahti O, Ekblom-Kullberg S et al. Headache and low platelets in a patient with acute leukemia. J. Clin. Virol.48(3), 159–161 (2010).
  • Petersen LR, Busch MP. Transfusion-transmitted arboviruses. Vox Sang.98(4), 495–503 (2010).
  • Zhang YZ, Zou Y, Fu ZF, Plyusnin A. Hantavirus infections in humans and animals, China. Emerg. Infect. Dis.16(8), 1195–1203 (2010).
  • Saggioro FP, Rossi MA, Duarte MI et al. Hantavirus infection induces a typical myocarditis that may be responsible for myocardial depression and shock in hantavirus pulmonary syndrome. J. Infect. Dis.195(10), 1541–1549 (2007).
  • Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev.23(2), 412–441 (2010).
  • Linderholm M, Billström A, Settergren B, Tärnvik A. Pulmonary involvement in nephropathia epidemica as demonstrated by computed tomography. Infection20(5), 263–266 (1992).
  • Linderholm M, Bjermer L, Juto P et al. Local host response in the lower respiratory tract in nephropathia epidemica. Scand. J. Infect. Dis.25(5), 639–646 (1993).
  • Kanerva M, Paakkala A, Mustonen J, Paakkala T, Lahtela J, Pasternack A. Pulmonary involvement in nephropathia epidemica: radiological findings and their clinical correlations. Clin. Nephrol.46(6), 369–378 (1996).
  • Linderholm M, Sandström T, Rinnstrom O, Groth S, Blomberg A, Tärnvik A. Impaired pulmonary function in patients with hemorrhagic fever with renal syndrome. Clin. Infect. Dis.25(5), 1084–1089 (1997).
  • Puljiz I, Kuzman I, Markotić A, Turcinov D, Matić M, Makek N. Electrocardiographic changes in patients with haemorrhagic fever with renal syndrome. Scand. J. Infect. Dis.37(8), 594–598 (2005).
  • Paakkala A, Mustonen J. Radiological findings and their clinical correlations in nephropathia epidemica. Acta Radiol.48(3), 345–350 (2007).
  • Mäkelä S, Kokkonen L, Ala-Houhala I et al. More than half of the patients with acute Puumala hantavirus infection have abnormal cardiac findings. Scand. J. Infect. Dis.41(1), 57–62 (2009).
  • Castillo C, Naranjo J, Sepúlveda A, Ossa G, Levy H. Hantavirus pulmonary syndrome due to Andes virus in Temuco, Chile: clinical experience with 16 adults. Chest120(2), 548–554 (2001).
  • Rivers MN, Alexander JL, Rohde RE, Pierce JR Jr. Hantavirus pulmonary syndrome in Texas: 1993–2006. South Med. J.102(1), 36–41 (2009).
  • Rasche FM, Uhel B, Krüger DH et al. Thrombocytopenia and acute renal failure in Puumala hantavirus infections. Emerg. Infect. Dis.10(8), 1420–1425 (2004).
  • Settergren B. Clinical aspects of nephropathia epidemica (Puumala virus infection) in Europe: a review. Scand. J. Infect. Dis.32(2), 125–132 (2000).
  • Tersago K, Verhagen R, Vapalahti O, Heyman P, Ducoffre G, Leirs H. Hantavirus outbreak in Western Europe: reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect.10, 1–10 (2010).
  • Pettersson L, Boman J, Juto P, Evander M, Ahlm C. Outbreak of Puumala virus infection, Sweden. Emerg. Infect. Dis.14(5), 808–810 (2008).
  • Hofmann J, Meisel H, Klempa B et al. Hantavirus outbreak, Germany, 2007. Emerg. Infect. Dis.14(5), 850–852 (2008).
  • Clement J, Vercauteren J, Verstraeten WW et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. Int. J. Health Geogr.8, 1 (2009).
  • Dearing MD, Dizney L. Ecology of hantavirus in a changing world. Ann. NY Acad. Sci.1195, 99–112 (2010).
  • Guan P, Huang D, He M, Shen T, Guo J, Zhou B. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: a 17-year data analysis based on structure equation model. BMC Infect. Dis.9, 109 (2009).
  • Hjertqvist M, Klein SL, Ahlm C, Klingström J. Mortality rate patterns for hemorrhagic fever with renal syndrome caused by Puumala virus. Emerg. Infect. Dis.16(10), 1584–1586 (2010).
  • Makary P, Kanerva M, Ollgren J, Virtanen MJ, Vapalahti O, Lyytikäinen O. Disease burden of Puumala virus infections, 1995–2008. Epidemiol. Infect.138(19), 1484–1492 (2010).
  • Hautala N, Kauma H, Vapalahti O et al. Prospective study on ocular findings in acute Puumala hantavirus infection in hospitalised patients. Br. J. Ophthalmol.DOI: 10.1136/bjo.2010.185413 (2010) (Epub ahead of print).
  • Alexeyev OA, Morozov VG. Neurological manifestations of hemorrhagic fever with renal syndrome caused by Puumala virus: review of 811 cases. Clin. Infect. Dis.20(2), 255–258 (1995).
  • Ahlm C, Lindén C, Linderholm M et al. Central nervous system and ophthalmic involvement in nephropathia epidemica (European type of haemorrhagic fever with renal syndrome). J. Infect.36(2), 149–155 (1998).
  • Mähönen SM, Sironen T, Vapalahti O et al. Puumala virus RNA in cerebrospinal fluid in a patient with uncomplicated nephropathia epidemica. J. Clin. Virol.40(3), 248–251 (2007).
  • Hautala T, Mähönen SM, Sironen T et al. Central nervous system-related symptoms and findings are common in acute Puumala hantavirus infection. Ann. Med.42(5), 344–351 (2010).
  • Cerar D, Avsic-Zupanc T, Jereb M, Strle F. Case report: severe neurological manifestation of Dobrava hantavirus infection. J. Med. Virol.79(12), 1841–1843 (2007).
  • Brorstad A, Oscarsson KB, Ahlm C. Early diagnosis of hantavirus infection by family doctors can reduce inappropriate antibiotic use and hospitalization. Scand. J. Prim. Health Care28(3), 179–184 (2010).
  • Vaheri A, Vapalahti O, Plyusnin A. How to diagnose hantavirus infections and detect them in rodents and insectivores. Rev. Med. Virol.18(4), 277–288 (2008).
  • Hukic M, Nikolic J, Valjevac A, Seremet M, Tesic G, Markotic A. A serosurvey reveals Bosnia and Herzegovina as a Europe’s hotspot in hantavirus seroprevalence. Epidemiol. Infect.138(8), 1185–1193 (2010).
  • Mendes WS, da Silva AA, Neiva RF et al. Serologic survey of hantavirus infection, Brazilian Amazon. Emerg. Infect. Dis.16(5), 889–891 (2010).
  • Klempa B, Koivogui L, Sylla O et al. Serological evidence of human hantavirus infections in Guinea, West Africa. J. Infect. Dis.201(7), 1031–1034 (2010).
  • Evander M, Eriksson I, Pettersson L et al. Puumala hantavirus viremia diagnosed by real-time reverse transcriptase PCR using samples from patients with hemorrhagic fever and renal syndrome. J. Clin. Microbiol.45(8), 2491–2497 (2007).
  • Golovljova I, Vasilenko V, Mittzenkov V et al. Characterization of hemorrhagic fever with renal syndrome caused by hantaviruses, Estonia. Emerg. Infect. Dis.13(11), 1773–1776 (2007).
  • Dzagurova TK, Klempa B, Tkachenko EA et al. Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. J. Clin. Microbiol.47(12), 4029–4036 (2009).
  • Plyusnina A, Ferenczi E, Rácz GR et al. Co-circulation of three pathogenic hantaviruses: Puumala, Dobrava, and Saaremaa in Hungary. J. Med. Virol.81(12), 2045–2052 (2009).
  • Markotić A, Nichol ST, Kuzman I et al. Characteristics of Puumala and Dobrava infections in Croatia. J. Med. Virol.66(4), 542–551 (2002).
  • Ahlm C, Linderholm M, Juto P, Stegmayr B, Settergren B. Prevalence of serum IgG antibodies to Puumala virus (haemorrhagic fever with renal syndrome) in northern Sweden. Epidemiol. Infect.113(1), 129–136 (1994).
  • Henttonen H, Vaheri A, Vapalahti O. Hantavirus infections in Finland. Euro. Surveill.5, 9–11 (1995).
  • Pergam SA, Schmidt DW, Nofchissey RA, Hunt WC, Harford AH, Goade DE. Potential renal sequelae in survivors of hantavirus cardiopulmonary syndrome. Am. J. Trop. Med. Hyg.80(2), 279–285 (2009).
  • Gracia F, Armien B, Simpson SQ et al. Convalescent pulmonary dysfunction following hantavirus pulmonary syndrome in Panama and the United States. Lung188(5), 387–391 (2010).
  • Mäkelä S, Ala-Houhala I, Mustonen J et al. Renal function and blood pressure five years after Puumala virus-induced nephropathy. Kidney Int.58(4), 1711–1718 (2000).
  • Miettinen MH, Mäkelä SM, Ala-Houhala IO et al. Tubular proteinuria and glomerular filtration 6 years after Puumala hantavirus-induced acute interstitial nephritis. Nephron Clin. Pract.112(2), c115–c120 (2009).
  • Tulumovic D, Imamovic G, Mesic E et al.Comparison of the effects of Puumala and Dobrava viruses on early and long-term renal outcomes in patients with haemorrhagic fever with renal syndrome. Nephrology15(3), 340–343 (2010).
  • Mäkelä S, Jaatinen P, Miettinen M et al. Hormonal deficiencies during and after Puumala hantavirus infection. Eur. J. Clin. Microbiol. Infect. Dis.29(6), 705–713 (2010).
  • Miettinen MH, Mäkelä SM, Ala-Houhala IO et al. Ten-year prognosis of Puumala hantavirus-induced acute interstitial nephritis. Kidney Int.69(11), 2043–2048 (2006).
  • Miettinen MH, Mäkelä SM, Ala-Houhala IO et al. The severity of acute Puumala hantavirus infection does not predict the long-term outcome of patients. Nephron Clin. Pract.116(2), c89–c94 (2010).
  • Meyer BJ, Schmaljohn CS. Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol.8(2), 61–67 (2000).
  • Manigold T, Martinez J, Lazcano X et al. Case report: T-cell responses during clearance of Andes virus from blood cells 2 months after severe hantavirus cardiopulmonary syndrome. J. Med. Virol.80(11), 1947–1951 (2008).
  • Maes P, Clement J, Van Ranst M. Recent approaches in hantavirus vaccine development. Expert Rev. Vaccines8(1), 67–76 (2009).
  • Schmaljohn C. Vaccines for hantaviruses. Vaccine27(S4), D61–D64 (2009).
  • Park K, Kim CS, Moon KT. Protective effectiveness of hantavirus vaccine. Emerg. Infect. Dis.10(12), 2218–2220 (2004).
  • Huggins JW, Hsiang CM, Cosgriff TM et al. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J. Infect. Dis.164(6), 1119–1127 (1991).
  • Rusnak JM, Byrne WR, Chung KN et al. Experience with intravenous ribavirin in the treatment of hemorrhagic fever with renal syndrome in Korea. Antiviral Res.81(1), 68–76 (2009).
  • Mertz GJ, Miedzinski L, Goade D et al. Placebo-controlled, double-blind trial of intravenous ribavirin for the treatment of hantavirus cardiopulmonary syndrome in North America. Clin. Infect. Dis.39(9), 1307–1313 (2004).
  • Tamura M, Asada H, Kondo K, Takahashi M, Yamanishi K. Effects of human and murine interferons against hemorrhagic fever with renal syndrome (HFRS) virus (Hantaan virus). Antiviral Res.8(4), 171–178 (1987).
  • Alff PJ, Gavrilovskaya IN, Gorbunova E et al. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J. Virol.80(19), 9676–9686 (2006).
  • Stoltz M, Ahlm C, Lundkvist Å, Klingström J. Lambda interferon (IFN-lambda) in serum is decreased in hantavirus-infected patients, and in vitro-established infection is insensitive to treatment with all IFNs and inhibits IFN-γ-induced nitric oxide production. J. Virol.81(16), 8685–8691 (2007).
  • Kirsi JJ, North JA, McKernan PA et al. Broad-spectrum antiviral activity of 2-β-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agent. Antimicrob. Agents Chemother.24(3), 353–361 (1983).
  • Huggins JW, Kim GR, Brand OM, McKee KT Jr. Ribavirin therapy for Hantaan virus infection in suckling mice. J. Infect. Dis.153(3), 489–497 (1986).
  • Medina RA, Mirowsky-Garcia K, Hutt J, Hjelle B. Ribavirin, human convalescent plasma and anti-β3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. J. Gen. Virol.88(2), 493–505 (2007).
  • Chung DH, Kumarapperuma SC, Sun Y et al. Synthesis of 1-β-D-ribofuranosyl-3-ethynyl-[1,2,4] triazole and its in vitro and in vivo efficacy against hantavirus. Antiviral Res.79(1), 19–27 (2008).
  • Chung DH, Strouse JJ, Sun Y, Arterburn JB, Parker WB, Jonsson CB. Synthesis and anti-Hantaan virus activity of N(1)-3-fluorophenyl-inosine. Antiviral Res.83(1), 80–85 (2009).
  • Hall PR, Hjelle B, Njus H et al. Phage display selection of cyclic peptides that inhibit Andes virus infection. J. Virol.83(17), 8965–8969 (2009).
  • Deng HY, Luo F, Shi LQ, Zhong Q, Liu YJ, Yang ZQ. Efficacy of arbidol on lethal Hantaan virus infections in suckling mice and in vitro. Acta Pharmacol. Sin.30(7), 1015–1024 (2009).
  • Klingström J, Stoltz M, Hardestam J, Ahlm C, Lundkvist Å. Passive immunization protects cynomolgus macaques against Puumala hantavirus challenge. Antivir. Ther.13(1), 125–133 (2008).
  • Habjan M, Andersson I, Klingström J et al. Processing of genome 5´ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One3(4), e2032 (2008).
  • Alff PJ, Sen N, Gorbunova E, Gavrilovskaya IN, Mackow ER. The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1–TRAF3 complex formation. J. Virol.82(18), 9115–9122 (2008).
  • Stoltz M, Klingström J. α/β interferon (IFN-α/β)-independent induction of IFN-λ1 (interleukin-29) in response to Hantaan virus infection. J. Virol.84(18), 9140–9148 (2010).
  • Spiropoulou CF, Albariño CG, Ksiazek TG, Rollin PE. Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J. Virol.81(6), 2769–2776 (2007).
  • Taylor SL, Frias-Staheli N, García-Sastre A, Schmaljohn CS. Hantaan virus nucleocapsid protein binds to importin α proteins and inhibits tumor necrosis factor α-induced activation of nuclear factor kappa B. J. Virol.83(3), 1271–1279 (2009).
  • Ontiveros SJ, Li Q, Jonsson CB. Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein. Virology401(2), 165–178 (2010).
  • Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow ER. β3 integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc. Natl Acad. Sci. USA95(12), 7074–7079 (1998).
  • Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by β3 integrins. J. Virol.73(5), 3951–3959 (1999).
  • Krautkrämer E, Zeier M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J. Virol.82(9), 4257–4264 (2008).
  • Choi Y, Kwon YC, Kim SI, Park JM, Lee KH, Ahn BY. A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology381(2), 178–183 (2008).
  • Mou DL, Wang YP, Huang CX et al. Cellular entry of Hantaan virus A9 strain: specific interactions with β3 integrins and a novel 70kDa protein. Biochem. Biophys. Res. Commun.339(2), 611–617 (2006).
  • Ye L, Liu Y, Yang S, Liao W, Wang C. Increased expression of Hsp70 and co-localization with nuclear protein in cells infected with the Hantaan virus. Chin. Med. J. (Engl.)114(5), 535–539 (2001).
  • Yu L, Ye L, Zhao R, Liu YF, Yang SJ. HSP70 induced by Hantavirus infection interacts with viral nucleocapsid protein and its overexpression suppresses virus infection in Vero E6 cells. Am. J. Transl. Res.1(4), 367–380 (2009).
  • Ravkov EV, Nichol ST, Peters CJ, Compans RW. Role of actin microfilaments in Black Creek Canal virus morphogenesis. J. Virol.72(4), 2865–2870 (1998).
  • Li XD, Mäkelä TP, Guo D et al. Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx. J. Gen. Virol.83(4), 759–766 (2002).
  • Lee BH, Yoshimatsu BHK, Maeda A et al. Association of the N protein of the Seoul and Hantaan hantaviruses with small ubiquitin-like modifier-1-related molecules. Virus Res.98(1), 83–91 (2003).
  • Mir MA, Sheema S, Haseeb A, Haque A. Hantavirus nucleocapsid protein has distinct m7G cap- and RNA-binding sites. J. Biol. Chem.285(15), 11357–11368 (2010).
  • Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT. Storage of cellular 5´mRNA caps in P bodies for viral cap-snatching. Proc. Natl Acad. Sci. USA105(49), 19294–19299 (2008).
  • Mir MA, Panganiban, AT. A protein that replaces the entire cellular eIF4F complex. EMBO J.27(23), 3129–3139 (2008).
  • Vera-Otarola J, Soto-Rifo R, Ricci EP, Ohlmann T, Darlix JL, López-Lastra M. The 3´ untranslated region of the Andes hantavirus small mRNA functionally replaces the poly(A) tail and stimulates cap-dependent translation initiation from the viral mRNA. J. Virol.DOI: 10.1128/JVI.01270-10 (2010) (Epub ahead of print).
  • Haque A, Mir MA. Interaction of hantavirus nucleocapsid protein (N) with ribosomal protein S19. J. Virol.84(23), 12450–12453 (2010).
  • Hardestam J, Pettersson L, Ahlm C, Evander C, Lundkvist Å, Klingström J. Antiviral effect of human saliva against hantavirus. J. Med. Virol.80(12), 2122–2126 (2008).
  • Hardestam J, Lundkvist Å, Klingström J. Sensitivity of Andes hantavirus to antiviral effect of human saliva. Emerg. Infect. Dis.15(7), 1140–1142 (2009).
  • Godoy P, Marsac D, Stefas E et al. Andes virus antigens are shed in urine of patients with acute hantavirus cardiopulmonary syndrome. J. Virol.83(10), 5046–5055 (2009).
  • Padula P, Figueroa R, Navarrete M et al. Transmission study of Andes hantavirus infection in wild sigmodontine rodents. J. Virol.78(21), 11972–11979 (2004).
  • Pettersson L, Klingström J, Hardestam J, Lundkvist Å, Ahlm C, Evander M. Hantavirus RNA in saliva from patients with hemorrhagic fever with renal syndrome. Emerg. Infect. Dis.14(3), 406–411 (2008).
  • Prescott JB, Hall PR, Bondu-Hawkins VS, Ye C, Hjelle B. Early innate immune responses to Sin Nombre hantavirus occur independently of IFN regulatory factor 3, characterized pattern recognition receptors, and viral entry. J. Immunol.179(3), 1796–1802 (2007).
  • Linderholm M, Ahlm C, Settergren B, Waage A, Tärnvik A. Elevated plasma levels of tumor necrosis factor (TNF)-α, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J. Infect. Dis.173(1), 38–43 (1996).
  • Krakauer T, Leduc JW, Krakauer H. Serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6 in hemorrhagic fever with renal syndrome. Viral Immunol.8(2), 75–79 (1995).
  • Mäkelä S, Mustonen J, Ala-Houhala I et al. Urinary excretion of interleukin-6 correlates with proteinuria in acute Puumala hantavirus-induced nephritis. Am. J. Kidney Dis.43(5), 809–816 (2004).
  • Borges AA, Campos GM, Moreli ML et al. Role of mixed Th1 and Th2 serum cytokines on pathogenesis and prognosis of hantavirus pulmonary syndrome. Microbes Infect.10(10–11), 1150–1157 (2008).
  • Outinen TK, Mäkelä SM, Ala-Houhala IO et al. The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations. BMC Infect. Dis.10, 132 (2010).
  • Tuuminen T, Kekäläinen E, Mäkelä S et al. Human CD8+ T cell memory generation in Puumala hantavirus infection occurs after the acute phase and is associated with boosting of EBV-specific CD8+ memory T cells. J. Immunol.179(3), 1988–1995 (2007).
  • Linderholm M, Groeneveld PH, Tärnvik A. Increased production of nitric oxide in patients with hemorrhagic fever with renal syndrome – relation to arterial hypotension and tumor necrosis factor. Infection24(5), 337–340 (1996).
  • Davis IC, Zajac AJ, Nolte KB, Botten J, Hjelle B, Matalon S. Elevated generation of reactive oxygen/nitrogen species in hantavirus cardiopulmonary syndrome. J. Virol.76(16), 8347–8359 (2002).
  • Klingström J, Åkerström S, Hardestam J et al. Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. Eur. J. Immunol.36(10), 2649–2657 (2006).
  • Maes P, Clement J, Gavrilovskaya I, Van Ranst M. Hantaviruses: immunology, treatment and prevention. Viral Immunol.17(4), 481–497 (2004).
  • Terajima M, Hayasaka D, Maeda K, Ennis FA. Immunopathogenesis of hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome: do CD8+ T cells trigger capillary leakage in viral hemorrhagic fevers? Immunol. Lett.113(2), 117–120 (2007).
  • Bharadwaj M, Nofchissey R, Goade D, Koster F, Hjelle B. Humoral immune responses in the hantavirus cardiopulmonary syndrome. J. Infect. Dis.182(1), 43–48 (2000).
  • MacNeil A, Comer JA, Ksiazek TG, Rollin PE. Sin Nombre virus-specific immunoglobulin M and G kinetics in hantavirus pulmonary syndrome and the role played by serologic responses in predicting disease outcome. J. Infect. Dis.202(2), 242–246 (2010).
  • Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J, Ennis FA. Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome. J. Immunol.172(5), 3297–3304 (2004).
  • Zhu LY, Chi LJ, Wang X, Zhou H. Reduced circulating CD4+CD25+ cell populations in haemorrhagic fever with renal syndrome. Clin. Exp. Immunol.156(1), 88–96 (2009).
  • Klingström J, Hardestam J, Stoltz M et al. Loss of cell membrane integrity in Puumala hantavirus-infected patients correlates with levels of epithelial cell apoptosis and perforin. J. Virol.80(16), 8279–8282 (2006).
  • Young JC, Hansen GR, Graves TK et al. The incubation period of hantavirus pulmonary syndrome. Am. J. Trop. Med. Hyg.62(6), 714–717 (2000).
  • Kramski M, Achazi K, Klempa B, Krüger DH. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol.44(1), 99–101 (2009).
  • Geimonen E, Neff S, Raymond T et al. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc. Natl Acad. Sci. USA99(21), 13837–13842 (2002).
  • Mackow ER, Gavrilovskaya IN. Hantavirus regulation of endothelial cell functions. Thromb. Haemost.102(6), 1030–1041 (2009).
  • Gavrilovskaya IN, Peresleni T, Geimonen E, Mackow ER. Pathogenic hantaviruses selectively inhibit β3 integrin directed endothelial cell migration. Arch. Virol.147(10), 1913–1931 (2002).
  • Gavrilovskaya IN, Gorbunova EE, Mackow ER. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J. Virol.84(9), 4832–4839 (2010).
  • Gavrilovskaya IN, Gorbunova EE, Mackow NA, Mackow ER. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. J. Virol.82(12), 5797–5806 (2008).
  • Gorbunova E, Gavrilovskaya IN, Mackow ER. Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells. J. Virol.84(14), 7405–7411 (2010).
  • Shrivastava-Ranjan P, Rollin PE, Spiropoulou CF. Andes virus disrupts the endothelial cell barrier by induction of VEGF and down-regulation of VE-cadherin. J. Virol.84(21), 11227–11234 (2010).
  • Pepini T, Gorbunova EE, Gavrilovskaya IN, Mackow JE, Mackow ER. Andes virus regulation of cellular microRNAs contributes to hantavirus induced endothelial cell permeability. J. Virol.84(22), 11929–11936 (2010).
  • Hooper JW, Larsen T, Custer DM, Schmaljohn CS. A lethal disease model for hantavirus pulmonary syndrome. Virology289(1), 6–14 (2001).
  • Matthys VS, Gorbunova EE, Gavrilovskaya IN, Mackow ER. Andes virus recognition of human and Syrian hamster β3 integrins is determined by an L33P substitution in the PSI domain. J. Virol.84(1), 352–360 (2010).
  • Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H. Antagonism of type I interferon responses by new world hantaviruses. J. Virol.84(22), 11790–11801 (2010).
  • Jordan WJ, Eskdale J, Srinivas S et al. Human interferon lambda-1 (IFN-γ1/IL-29) modulates the Th1/Th2 response. Genes Immun.8(3), 254–261 (2007).
  • Dai J, Megjugorac NJ, Gallagher GE, Yu RYL, Gallagher G. IFN-γ1 (IL29) inhibits GATA3 expression and suppresses Th2 responses in human naïve and memory T cells. Blood113(23), 5829–5838 (2009).
  • Morrow MP, Pankhong P, Laddy DJ et al. Comparative ability of IL-12 and IL-28B to regulate Treg cell populations and enhance adaptive cellular immunity. Blood113(23), 5868–5877 (2009).
  • Mustonen J, Partanen J, Kanerva M et al. Genetic susceptibility to severe course of nephropathia epidemica caused by Puumala hantavirus. Kidney Int.49(1), 217–221 (1996).
  • Mäkelä S, Mustonen J, Ala-Houhala I et al. Human leukocyte antigen-B8-DR3 is a more important risk factor for severe Puumala hantavirus infection than the tumor necrosis factor-α(-308) G/A polymorphism. J. Infect. Dis.186(6), 843–846 (2002).
  • Mustonen J, Partanen J, Kanerva M et al. Association of HLA B27 with benign clinical course of nephropathia epidemica caused by Puumala hantavirus. Scand. J. Immunol.47(3), 277–279 (1998).
  • Mustonen J, Huttunen NP, Partanen J et al. Human leukocyte antigens B8-DRB1*03 in pediatric patients with nephropathia epidemica caused by Puumala hantavirus. Pediatr. Infect. Dis. J.23(10), 959–961 (2004).
  • Wang ML, Lai JH, Zhu Y et al. Genetic susceptibility to haemorrhagic fever with renal syndrome caused by Hantaan virus in Chinese Han population. Int. J. Immunogenet.36(4), 227–229 (2009).
  • Klein SL, Calisher CH. Emergence and persistence of hantaviruses. Curr. Top. Microbiol. Immunol.315, 217–252 (2007).
  • Martinez VP, Bellomo CM, Cacace ML et al. Hantavirus pulmonary syndrome in Argentina, 1995–2008. Emerg. Infect. Dis.DOI: 10.3201/eid1612.091170 (2010) (Epub ahead of print).
  • Klingström J, Lindgren T, Ahlm C. Sex-dependent differences in plasma cytokine responses to hantavirus infection. Clin. Vaccine Immunol.15(5), 885–887 (2008).
  • Wahl-Jensen V, Chapman J, Asher L et al. Temporal analysis of Andes virus and Sin Nombre virus infections of Syrian hamsters. J. Virol.81(14), 7449–7462 (2007).
  • Klingström J, Plyusnin A, Vaheri A, Lundkvist Å. Wild-type Puumala hantavirus infection induces cytokines, C-reactive protein, creatinine, and nitric oxide in cynomolgus macaques. J. Virol.76(1), 444–449 (2002).
  • Sironen T, Klingström J, Vaheri A, Andersson LC, Lundkvist Å, Plyusnin A. Pathology of Puumala hantavirus infection in macaques. PLoS One3(8), e3035 (2008).
  • Klingström J, Hardestam J, Lundkvist Å. Dobrava, but not Saaremaa, hantavirus is lethal and induces nitric oxide production in suckling mice. Microbes Infect.8(3), 728–737 (2006).
  • Easterbrook JD, Zink MC, Klein SL. Regulatory T cells enhance persistence of the zoonotic pathogen Seoul virus in its reservoir host. Proc. Natl Acad. Sci. USA104(39), 15502–15507 (2007).
  • Schountz T, Prescott J, Cogswell AC et al. Regulatory T cell-like responses in deer mice persistently infected with Sin Nombre virus. Proc. Natl Acad. Sci. USA104(39), 15496–15501 (2007).
  • Kukkonen SKJ, Vaheri A, Plyusnin A. Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein. J. Gen. Virol.85(5), 1181–1189 (2004).
  • Kukkonen SKJ, Vaheri A, Plyusnin A. L protein, the RNA-dependent RNA-polymerase of hantaviruses. Arch. Virol.150(3), 533–556 (2005).
  • Chung DH, Sun Y, Parker WB, Arterburn JB, Bartolucci A, Jonsson CB. Ribavirin reveals a lethal threshold of allowable mutation frequency for Hantaan virus. J. Virol.81(21), 11722–11729 (2007).
  • Löber C, Anheier B, Lindow S, Klenk HD, Feldmann H. The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology289(2), 224–229 (2001).
  • Hepojoki J, Strandin T, Vaheri A, Lankinen H. Interactions and oligomerization of hantavirus glycoproteins. J. Virol.84(1), 227–242 (2010).
  • Hepojoki J, Strandin T, Wang H, Vapalahti O, Vaheri A, Lankinen H. Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. J. Gen. Virol.91(9), 2341–2350 (2010).
  • Larson RS, Brown DC, Ye C, Hjelle B. Peptide antagonists that inhibit Sin Nombre virus and hantaan virus entry through the β3-integrin receptor. J. Virol.79(12), 7319–7326 (2005).
  • Estrada DF, Boudreaux DM, Zhong D, St Jeor SC, De Guzman RN. The Hantavirus glycoprotein G1 tail contains dual CCHC-type classical zinc fingers. J. Biol. Chem.284(13), 8654–8660 (2009).
  • Geimonen E, LaMonica R, Springer K, Farooqui Y, Gavrilovskaya IN, Mackow ER. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved and functional ITAM signaling elements. J. Virol.77(2), 1638–1643 (2003).
  • Geimonen E, Fernandez I, Gavrilovskaya IN, Mackow ER. Tyrosine residues direct the ubiquitination and degradation of the NY-1 hantavirus G1 cytoplasmic tail. J. Virol.77(20), 10760–10868 (2003).
  • Kaukinen P, Vaheri A, Plyusnin A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch. Virol.150(9), 1693–1713 (2005).
  • Plyusnin A. Genetics of hantaviruses: implications to taxonomy. Arch. Virol.147(4), 665–682 (2002).
  • Virtanen JO, Jääskeläinen KM, Djupsjöbacka J, Vaheri A, Plyusnin A. Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells. Arch. Virol.155(1), 117–121 (2010).
  • Jääskeläinen KM, Plyusnina A, Lundkvist A, Vaheri A, Plyusnin A. Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF. Virol. J.5, 3 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.