60
Views
11
CrossRef citations to date
0
Altmetric
Review

Molecular tools for rapid identification and novel effective therapy against MDRTB/XDRTB infections

, , , , , & show all
Pages 465-480 | Published online: 10 Jan 2014

References

  • World Health Organization. Global tuberculosis control: surveillance, planning, financing. WHO report 2008. World Health Organization, Geneva, Switzerland (2008).
  • Stop TB Partnership. The Global Plan to Stop TB, 2006–2015: actions for life: towards a world free of tuberculosis. World Health Organization, Geneva, Switzerland (2006).
  • Goldman RC, Plumley KV, Laughon BE. The evolution of extensively drug resistant tuberculosis (XDR-TB): history, status and issues for global control. Infect. Disord. Drug Targets7, 73–91 (2007).
  • World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis. World Health Organization, Geneva, Switzerland (2006).
  • Amaral L, Martins M, Viveiros M, Molnar J, Kristiansen JE. Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial-efflux pumps. Curr. Drug Targets9, 816–819 (2008).
  • Martins M, Viveiros M, Couto I, Amaral L. Targeting human macrophages for enhanced killing of intracellular XDR-TB and MDR-TB. Int. J. Tuberc. Lung Dis.13, 569–573 (2009).
  • Stricof RL, DiFerdinando GT Jr, Osten WM, Novick LF. Tuberculosis control in New York City hospitals. Am. J. Infect. Control26, 270–276 (1998).
  • Barr RG, Diez-Roux AV, Knirsch CA, Pablos-Méndez A. Neighborhood poverty and the resurgence of tuberculosis in New York City, 1984–1992. Am. J. Public Health91, 1487–1493 (2001).
  • Frieden TR, Fujiwara PI, Washko RM, Hamburg MA. Tuberculosis in New York city – turning the tide. N. Engl. J. Med.333, 229–233 (1995).
  • Kamholz SL. Resurgence of tuberculosis: the perspective a dozen years later. J. Assoc. Acad. Minor Phys.7, 83–96 (1996).
  • Frieden TR, Driver CR. Tuberculosis control: past 10 years and future progress. Tuberculosis (Edinb.)83, 82–85 (2003).
  • Salfinger M, Hale YM, Driscoll JR. Diagnostic tools in tuberculosis. Present and future. Respiration65, 163–170 (1998).
  • Paolo WF Jr, Nosanchuk JD. Tuberculosis in New York city: recent lessons and a look ahead. Lancet Infect. Dis.4, 287–293 (2004).
  • Antunes ML, Aleixo-Dias J, Antunes AF, Pereira MF, Raymundo F, Rodrigues MF. Anti-tuberculosis drug resistance in Portugal. Int. J. Tuberc. Lung Dis.4, 223–231 (2000).
  • Direcção Geral Saúde. Ponto da situação da Tuberculose em Portugal para o ano de 2007 – Dia Mundial da Tuberculose (TB) 2008 – Notas prévias. Ministério da Saúde, Lisboa, Portugal (2008).
  • Portugal I, Barreiro L, Vultos T et al. Molecular epidemiology of Mycobacterium tuberculosis in Lisbon. Rev. Port. Pneumol.14, 239–259 (2008).
  • Perdigão J, Macedo R, João I, Fernandes E, Brum L, Portugal I. Multidrug-resistant tuberculosis in Lisbon, Portugal: a molecular epidemiological perspective. Microb. Drug Resist.14, 133–143 (2008).
  • Proença R. Reflexões sobre a tuberculose na actualidade. Rev. Port. Doenças Infecciosas21, 33–37 (1998).
  • Antunes ML, Fonseca-Antunes A. The tuberculosis situation in Portugal: a historical perspective to 1994. Euro Surveill.1, 19–21 (1996).
  • Portugal I, Covas MJ, Viveiros M, Ferrinho P, Moniz-Pereira J, David H. Outbreak of multiple drug-resistant tuberculosis in Lisbon: detection by restriction fragment length polymorphism. Int. J. Tuberc. Lung Dis.3, 207–213 (1999).
  • Perdigão J, Macedo R, Malaquias A, Ferreira A, Brum L, Portugal I. Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J. Antimicrob. Chemother.65(2), 224–227 (2010).
  • Centers for Disease Control and Prevention and National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories 4th Edition. US Department of Health and Human Services. Public Health Service. US Government Printing Office, Washington, DC, USA (1999).
  • Centers for Disease Control and Prevention and National Institutes of Health. Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets 2nd Edition. Department of Health and Human Services. Public Health Service. US Government Printing Office, Washington, DC, USA (2000).
  • Centers for Disease Control and Prevention. Goals for Working Safely with Mycobacterium tuberculosis in Clinical, Public Health, and Research Laboratories Federal Register, USA (1997).
  • Portugal I, Maia S, Moniz-Pereira J. Discrimination of multidrug-resistant Mycobacterium tuberculosis IS6110 fingerprint subclusters by rpoB gene mutation analysis. J. Clin. Microbiol.37, 3022–3024 (1999).
  • Viveiros M, Leandro C, Rodrigues L et al. Direct application of the INNO-LiPA Rif.TB line-probe assay for rapid identification of Mycobacterium tuberculosis complex strains and detection of rifampin resistance in 360smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis. J. Clin. Microbiol.43, 4880–4884 (2005).
  • Somoskovi A, Song Q, Mester J et al. Use of molecular methods to identify the Mycobacterium tuberculosis complex (MTBC) and other mycobacterial species and to detect rifampin resistance in MTBC isolates following growth detection with the BACTEC MGIT 960 system. J. Clin. Microbiol.41, 2822–2826 (2003).
  • Rossau R, Traore H, De Beenhouwer H et al. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob. Agents Chemother.41, 2093–2098 (1997).
  • Tortolli E, Marcelli F. Use of the INNO LIPA Rif.TB for detection of Mycobacterium tuberculosis DNA directly in clinical specimens and for simultaneous determination of rifampin susceptibility. Eur. J. Clin. Microbiol. Infect. Dis.26, 51–55 (2007).
  • World Health Organization. The WHO/IUTALD global project on anti-tuberculosis drug resistance surveillance, report no. 3, 1999–2002. World Health Organization, Geneva, Switzerland (2004).
  • Ormerod LP. Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br. Med. Bull.74, 17–24 (2005).
  • Costeira J, Pina J. Multi-drug resistant tuberculosis and the red queen – diagnosis speed is crucial. Rev. Port. Pneumol.13, 869–877 (2007).
  • Framework Action Plan to Fight Tuberculosis in the European Union. ECDC – European Centre for Disease Prevention and Control, Stockholm, Sweden (2008).
  • Direcção-Geral da Saúde. Circular Normativa No. 12/DSCS/PNT. Detecção rápida da Tuberculose Multirresistente – Rapid Detection of Multidrug Resistant Tuberculosis. Portugal (2008).
  • Ehrlich P. The Collected Papers of Paul Ehrlich. Himmelweit F, Marquardi M, Dale H (Eds). Pergammon Press, London, UK, 189–194 (1956).
  • Amaral L, Kristiansen JE. Phenothiazines: an alternative to conventional management of suspect multidrug resistant tuberculosis. Int. J. Antimicrob. Agents14, 173–176 (2000).
  • Kaminska M. The role of chlorpromazine in the treatment of pulmonary tuberculosis in psychiatric patients. Folia Med. Cracoviensia9, 115–143 (1967).
  • Libenson VS, Braude VI. The antitubercular effect of aminazin. Biull. Eksp. Biol. Med.63, 61–63 (1967).
  • Molnár J, Béládi I, Földes I. Studies on antituberculotic action of some phenothiazine derivatives in vitro. Zentralbl. Bakteriol.239, 521–526 (1977).
  • Viveiros M, Amaral L. Enhancement of antibiotic activity against poly-drug resistant Mycobacterium tuberculosis by phenothiazines. Int. J. Antimicrob. Agents17, 225–228 (2001).
  • Kristiansen JE, Vergmann B. The antibacterial effect of selected phenothiazines and thioxanthenes on slow-growing mycobacteria. Acta Pathol. Microbiol. Immunol. Scand. B94, 393–398 (1986).
  • Amaral L, Kristiansen JE, Abebe LS, Millett W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J. Antimicrob. Chemother.38, 1049–1053 (1996).
  • Bettencourt-Viveiros M, Bosne-David S, Amaral L. Comparative activity of phenothiazines against multi-drug resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents16, 69–71 (2000).
  • Ratnakar P, Rao SP, Sriramarao P, Murthy PS. Structure–antitubercular activity relationship of phenothiazine-type calmodulin antagonists. Int. Clin. Psychopharmacol.10, 39–43 (1995).
  • Bate AB, Kalin JH, Fooksman EM et al. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives. Bioorg. Med. Chem. Lett.17, 1346–1348 (2007).
  • Martins M, Schelz Z, Martins A et al.In vitro and ex vivo activity of thioridazine derivatives against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents29, 338–340 (2007).
  • Amaral L, Kristiansen JE. Phenothiazines: potential management of Creutzfeldt Jakob disease and its variants. Int. J. Antimicrob. Agents18, 411–417 (2001).
  • Amaral L, Viveiros M, Molnar J. Antimicrobial activity of phenothiazines. In Vivo18, 725–732 (2004).
  • Ishizaki J, Yokogawa K, Hirano M et al. Contribution of lysosomes to the subcellular distribution of basic drugs in the rat liver. Pharm. Res.13, 902–906 (1996).
  • Daniel WA, Wójcikowski J. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol. Toxicol.80, 62–68 (1997).
  • Daniel WA, Wójcikowski J. The role of lysosomes in the cellular distribution of thioridazine and potential drug interactions. Toxicol. Appl. Pharmacol.158, 115–124 (1999).
  • Daniel WA, Wójcikowski J. Lysosomal trapping as an important mechanism involved in the cellular distribution of perazine and in pharmacokinetic interaction with antidepressants. Eur. Neuropsychopharmacol.9, 483–491 (1999).
  • Wójcikowski J, Daniel WA. Distribution interactions between perazine and antidepressant drugs. In vivo studies. Pol. J. Pharmacol.52, 449–457 (2000).
  • Crowle AJ, Douvas GS, May MH. Chlorpromazine: a drug potentially useful for treating mycobacterial infections. Chemotherapy38, 410–419 (1992).
  • Ordway D, Viveiros M, Leandro C, Amaral L. Clinical concentrations of thioridazine kill intracellular multi-drug resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother.47, 917–922 (2003).
  • van Ingen J, Boeree M, Amaral L, Dekhuijzen R, van Soolingen D. In vitro activity of thioridazine against nontuberculous mycobacteria. Int. J. Antimicrob. Agents34, 190–191 (2009).
  • Martins M, Viveiros M, Kristiansen JE, Molnar J, Amaral L. The curative activity of thioridazine on mice infected with Mycobacterium tuberculosis. In Vivo21, 771–775 (2007).
  • Amaral L. TB and phenothiazines. Scientist19, 8–10 (2005).
  • Amaral L, Viveiros M, Kristiansen JE. “Non-antibiotics”: alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries. Curr. Drug Targets7, 887–891 (2006).
  • Amaral L, Martins M, Viveiros M. Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J. Antimicrob. Chemother.59, 1237–1246 (2007).
  • Zemrak WR, Kenna GA. Association of antipsychotic and antidepressant drugs with Q-T interval prolongation. Am. J. Health Syst. Pharm.65, 1029–1038 (2008).
  • Gongadze N, Kezeli T, Antelava N. Prolong QT interval and “torsades de pointes” associated with different group of drugs. Georgian Med. News153, 45–49 (2007).
  • Mackin P. Cardiac side effects of psychiatric drugs. Hum. Psychopharmacol.23, 3–14 (2008).
  • Salih IS, Thanacoody RH, McKay GA, Thomas SH. Comparison of the effects of thioridazine and mesoridazine on the QT interval in healthy adults after single oral doses. Clin. Pharmacol. Ther.82, 548–554 (2007).
  • Thanacoody HK. Thioridazine: resurrection as an antimicrobial agent? Br. J. Clin. Pharmacol.64, 566–574 (2007).
  • Amaral L, Martins M, Viveiros M. Phenothiazines as anti-multi-drug resistant tubercular agents. Infect. Disord. Drug Targets7, 257–265 (2007).
  • Courmont P, Derries G. Antibiotic effect in vitro of R P 3277 on Koch’s bacilli. C. R. Seances Soc. Biol. Fil.145, 335–338 (1951).
  • Daniel WA, Wojcikowski J. Interactions between promazine and antidepressants at the level of cellular distribution. Pharmacol. Toxicol.81, 259–264 (1997).
  • Daniel WA, Wojcikowski J, Palucha A. Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br. J. Pharmacol.134, 807–814 (2001).
  • Gadre DV, Talwar V, Gupta HC, Murthy PS. Effect of trifluoperazine, a potential drug for tuberculosis with psychotic disorders, on the growth of clinical isolates of drug resistant Mycobacterium tuberculosis. Int. Clin. Psychopharmacol.13, 129–131 (1998).
  • Ratnakar P, Murthy PS. Trifluoperazine inhibits the incorporation of labelled precursors into lipids, proteins and DNA of Mycobacterium tuberculosis H37Rv. FEMS Microbiol. Lett.110, 291–294 (1993).
  • Salih FA, Kaushik NK, Sharma P, Choudary GV, Murthy PS, Venkitasubramanian TA. Calmodulin-like activity in mycobacteria. Indian J. Biochem. Biophys.28, 491–495 (1991).
  • Csiszar K, Molnar J. Mechanism of action of tricyclic drugs on Escherichia coli and Yersinia enterocolitica plasmid maintenance and replication. Anticancer Res.12, 2267–2272 (1992).
  • Molnár J, Földeák S, Nakamura MJ, Gaizer F, Gutmann F. The influence of charge transfer complex formation on the antibacterial activity of some tricyclic drugs. Xenobiotica21, 309–316 (1991).
  • Viveiros M, Portugal I, Bettencourt R et al. Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.46, 2804–2810 (2002).
  • Amaral L, Engi H, Viveiros M, Molnar J. Comparison of multidrug resistant efflux pumps of cancer and bacterial cells with respect to the same inhibitory agents. In Vivo21, 237–244 (2007).
  • Viveiros M, Martins M, Couto I et al. New methods for the identification of efflux mediated MDR bacteria, genetic assessment of regulators and efflux pump constituents, characterization of efflux systems and screening for inhibitors of efflux pumps. Curr. Drug Targets9, 760–778 (2008).
  • Viveiros M, Leandro C, Amaral L. Mycobacterial efflux pumps and chemotherapeutic implications. Int. J. Antimicrob. Agents22, 274–278 (2003).
  • Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.52, 2503–2511 (2008).
  • Jiang X, Zhang W, Zhang Y et al. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb. Drug Resist.14, 7–11 (2008).
  • Escribano I, Rodríguez JC, Llorca B, García-Pachon E, Ruiz M, Royo G. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy53, 397–401 (2007).
  • Gumbo T, Louie A, Liu W et al. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J. Infect. Dis.195, 194–201 (2007).
  • De La Iglesia AI, Morbidoni HR. Mechanisms of action of and resistance to rifampicin and isoniazid in Mycobacterium tuberculosis: new information on old friends. Rev. Argent. Microbiol.38, 97–109 (2006).
  • De Rossi E, Aínsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol. Rev.30, 36–52 (2006).
  • Tkachenko AG, Chudinov AA, Nagorskikh TG. Role of the energy status and putrescine transport in the maintenance of the intracellular pH homeostasis in the course of alkaline and acidic shifts in Escherichia coli. Mikrobiologiia62, 37–45 (1993).
  • Bagramian KA, Vasilian AV, Trchunian AA. Character of K+ absorption and its interaction with membrane protein pumps in Escherichia coli, grown under anaerobic conditions in the presence of nitrate. Biofizika41, 377–383 (1996).
  • Ahluwalia J, Tinker A, Clapp LH et al. The large-conductance Ca2+ activated K+ channel is essential for innate immunity. Nature427, 853–858 (2004).
  • Reeves EP, Lu H, Jacobs HL et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature416, 291–297 (2002).
  • Kristiansen JE, Mortensen I, Nissen B. Membrane stabilizers inhibit potassium efflux from Staphylococcus aureus strain no. U2275. Biochim. Biophys. Acta685, 379–382 (1982).
  • Martins M, Viveiros M, Amaral L. Inhibitors of Ca2+ and K+ transport enhance intracellular killing of M. tuberculosis by non-killing macrophages. In Vivo22, 69–75 (2008).
  • Martins M, Bleiss W, Marko A et al. Clinical concentrations of thioridazine enhance the killing of intracellular methicillin-resistant Staphylococcus aureus: an in vivo, ex vivo and electron microscopy study. In Vivo18, 787–794 (2004).
  • Allen LA, Aderem A. Mechanisms of phagocytosis. Curr. Opin. Immunol.8, 36–40 (1996).
  • Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. Rev.16, 379–414 (2003).
  • Józefowski S, Sobota A, Kwiatkowska K. How Mycobacterium tuberculosis subverts host immune responses. Bioessays30, 943–954 (2008).
  • Tosteson DC. The cellular functions of active transport of K and Na. Physiol. Pharmacol. Physicians3, 1–6 (1965).
  • Skou JC. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev.45, 596–617 (1965).
  • Schoner W. Active transport of Na+ and K+ through animal cell membranes. Angew. Chem. Int. Ed. Engl.10, 882–889 (1971).
  • Fairbairn IP, Stober CB, Kumararatne DS. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome–lysosome fusion. J. Immunol.167, 3300–3307 (2001).
  • Kusner DJ, Barton JA. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome–lysosome fusion. J. Immunol.167, 3308–3315 (2001).
  • Pillay CS, Elliott E, Dennison C. Endolysosomal proteolysis and its regulation. Biochem. J.363, 417–429 (2002).
  • Saunders BM, Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol.85, 103–111 (2007).
  • Martins M, Ordway D, Kristiansen M et al. Inhibition of the Carpobrotus edulis methanol extract on the growth of phagocytosed multidrug-resistant Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus. Fitoterapia76, 96–99 (2005).
  • Ordway D, Hohmann J, Viveiros M et al.Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation. Phytother. Res.17, 512–519 (2003).
  • Ordway D, Viveiros M, Leandro C et al. Chlorpromazine has intracellular killing activity against phagocytosed Staphylococcus aureus at clinical concentrations. J. Infect. Chemother.8, 227–231 (2002).
  • Ordway D, Viveiros M, Leandro C, Arroz MJ, Amaral L. Intracellular activity of clinical concentrations of phenothiazines including thioridazine against phagocytosed Staphylococcus aureus. Int. J. Antimicrob. Agents20, 34–43 (2002).
  • Abbate E, Vescovo M, Natiello M et al. Tuberculosis extensamente resistente (XDR-TB) en Argentina: aspectos destacables epidemiológicos, bacteriológicos, terapéuticos y evolutivos. Revista Argentina de Medicina Respiratoria1, 19–25 (2007).
  • World Health Organization. Report of the meeting of the WHO Global Task Force on XDR-TB. World Health Organization, Geneva, Switzerland (2006).
  • Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: part II. Active tuberculosis and drug resistance. Expert Rev. Mol. Diagn.6, 423–432 (2006).
  • Palomino JC. Newer diagnostics for tuberculosis and multi-drug resistant tuberculosis. Curr. Opin. Pulm. Med.12, 172–178 (2006).
  • Amaral L, Boeree MJ, Gillespie SH, Udwadia ZF, van Soolingen D. Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int J Antimicrob Agents. DOI:10.1016/j.ijantimicag.2009.12.019 (2010) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.