301
Views
77
CrossRef citations to date
0
Altmetric
Review

Status report on carbapenemases: challenges and prospects

&
Pages 555-570 | Published online: 10 Jan 2014

References

  • Carmeli Y, Troillet N, Karchmer AW, Samore MH. Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch. Intern. Med.159(10), 1127–1132 (1999).
  • Lautenbach E, Weiner MG, Nachamkin I et al. Imipenem resistance among Pseudomonas aeruginosa isolates: risk factors for infection and impact of resistance on clinical and economic outcomes. Infect. Control Hosp. Epidemiol.27(9), 893–900 (2006).
  • Lautenbach E, Synnestvedt M, Weiner MG et al. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect. Control Hosp. Epidemiol.31(1), 47–53 (2010).
  • Lautenbach E, Synnestvedt M, Weiner MG et al. Epidemiology and impact of imipenem resistance in Acinetobacter baumannii. Infect. Control Hosp. Epidemiol.30(12), 1186–1192 (2009).
  • Hidron AI, Edwards JR, Patel J et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol.29(11), 996–1011 (2008).
  • Nicasio AM, Kuti JL, Nicolau DP. The current state of multidrug-resistant Gram-negative bacilli in North America. Pharmacotherapy28(2), 235–249 (2008).
  • Paterson DL. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control34(5 Suppl. 1), S20–S28; Discussion S64–S73 (2006).
  • Landman D, Bratu S, Kochar S et al. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J. Antimicrob. Chemother.60(1), 78–82 (2007).
  • Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev.18(4), 657–686 (2005).
  • Young L, Sabel A, Price C. Epidemiologic, clinical, and economic evaluation of an outbreak of clonal multidrug-resistant Acinetobacter baumannii infection in a surgical intensive care unit. Infect. Control Hosp. Epidemiol.28(11), 1247–1254 (2007).
  • Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev.23(1), 160–201 (2010).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci.289(1036), 321–331 (1980).
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother.54(3), 969–976 (2010).
  • Jacoby GA. AmpC β-lactamases. Clin. Microbiol. Rev.22(1), 161–182 (2009).
  • Pai H, Kang C-I, Byeon J-H et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β lactamase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.48(10), 3720–3728 (2004).
  • Mammeri H, Guillon H, Eb F, Nordmann P. Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases. Antimicrob. Agents Chemother.54(11), 4556–4560 (2010).
  • Martinez-Martinez L, Pascual A, Hernandez-Alles S et al. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother.43(7), 1669–1673 (1999).
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev.20(3), 440–458 (2007).
  • Bradford PA, Urban C, Mariano N et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother.41(3), 563–569 (1997).
  • Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing β-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother.37(5), 939–946 (1993).
  • Pottumarthy S, Moland ES, Juretschko S et al. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg. Infect. Dis.9(8), 999–1002 (2003).
  • Castanheira M, Sader HS, Deshpande LM, Fritsche TR, Jones RN. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother.52(2), 570–573 (2008).
  • Rasmussen B, Bush K, Keeney D et al. Characterization of IMI-1 β-lactamase, a class A carbapenem- hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother.40(9), 2080–2086 (1996).
  • Naas T, Vandel L, Sougakoff W, Livermore DM, Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A β-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob. Agents Chemother.38(6), 1262–1270 (1994).
  • Queenan AM, Torres-Viera C, Gold HS et al. SME-type carbapenem-hydrolyzing class A β-lactamases from geographically diverse Serratia marcescens strains. Antimicrob. Agents Chemother.44(11), 3035–3039 (2000).
  • Queenan AM, Shang W, Schreckenberger P et al. SME-3, a novel member of the Serratia marcescens SME family of carbapenem-hydrolyzing β-lactamases. Antimicrob. Agents Chemother.50(10), 3485–3487 (2006).
  • Poirel L, Wenger A, Bille J et al. SME-2-producing Serratia marcescens isolate from Switzerland. Antimicrob. Agents Chemother.51(6), 2282–2283 (2007).
  • Carrer A, Poirel L, Pitout JD, Church D, Nordmann P. Occurrence of an SME-2-producing Serratia marcescens isolate in Canada. Int. J. Antimicrob. Agents.31(2), 181–182 (2008).
  • Henriques I, Moura A, Alves A, Saavedra MJ, Correia A. Molecular characterization of a carbapenem-hydrolyzing class A β-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob. Agents Chemother.48(6), 2321–2324 (2004).
  • Girlich D, Poirel L, Nordmann P. Novel ambler class A carbapenem-hydrolyzing β-lactamase from a Pseudomonas fluorescens isolate from the Seine River, Paris, France. Antimicrob. Agents Chemother.54(1), 328–332 (2010).
  • Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother.44(3), 622–632 (2000).
  • Castanheira M, Mendes RE, Walsh TR, Gales AC, Jones RN. Emergence of the extended-spectrum β-lactamase GES-1 in a Pseudomonas aeruginosa strain from Brazil: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother.48(6), 2344–2345 (2004).
  • Walther-Rasmussen J, Høiby N. Class A carbapenemases. J. Antimicrob. Chemother.60(3), 470–482 (2007).
  • Poirel L, Weldhagen GF, De Champs C, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum β-lactamase GES-2 in South Africa. J. Antimicrob. Chemother.49(3), 561–565 (2002).
  • Jeong SH, Bae IK, Kim D et al. First outbreak of Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum β-lactamases in Korea. Antimicrob. Agents Chemother.49(11), 4809–4810 (2005).
  • da Fonseca ÉL, Vieira VV, Cipriano R, Vicente ACP. Emergence of blaGES-5 in clinical colistin-only-sensitive (COS) Pseudomonas aeruginosa strain in Brazil. J. Antimicrob. Chemother.59(3), 576–577 (2007).
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis.9(4), 228–236 (2009).
  • Deshpande L, Rhomberg P, Sader H, Jones R. Emergence of serine carbapenemases (KPC and SME) among clinical strains of Enterobacteriaceae isolated in the United States Medical Centers: Report from the MYSTIC Program (1999–2005). Diagn. Microbiol. Infect. Dis.56(4), 367–372 (2006).
  • Srinivasan A, Patel J. Commentary: Klebsiella pneumoniae carbapenemase-producing organisms: an ounce of prevention really is worth a pound of cure. Infect. Control Hosp. Epidemiol.29(12), 1107–1109 (2008).
  • Endimiani A, Hujer AM, Perez F et al. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the Eastern USA. J. Antimicrob. Chemother.63(3), 427–437 (2009).
  • Yigit H, Queenan AM, Rasheed JK et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing β-lactamase KPC-2. Antimicrob. Agents Chemother.47(12), 3881–3889 (2003).
  • Bratu S, Landman D, Alam M, Tolentino E, Quale J. Detection of KPC carbapenem-hydrolyzing enzymes in Enterobacter spp. from Brooklyn, New York. Antimicrob. Agents Chemother.49(2), 776–778 (2005).
  • Villegas MV, Lolans K, Correa A et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother.51(4), 1553–1555 (2007).
  • Cai JC, Zhou HW, Zhang R, Chen G-X. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob. Agents Chemother.52(6), 2014–2018 (2008).
  • Rasheed JK, Biddle JW, Anderson KF et al. Detection of the Klebsiella pneumoniae carbapenemase type 2 carbapenem-hydrolyzing enzyme in clinical isolates of Citrobacter freundii and K. oxytoca carrying a common plasmid. J. Clin. Microbiol.46(6), 2066–2069 (2008).
  • Miriagou V, Tzouvelekis LS, Rossiter S et al. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother.47(4), 1297–1300 (2003).
  • Tibbetts R, Frye JG, Marschall J, Warren D, Dunne W. Detection of KPC-2 in a clinical isolate of Proteus mirabilis and first reported description of carbapenemase resistance caused by a KPC β-lactamase in P. mirabilis. J. Clin. Microbiol.46(9), 3080–3083 (2008).
  • Yigit H, Queenan AM, Anderson GJ et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother.45(4), 1151–1161 (2001).
  • Wolter DJ, Kurpiel PM, Woodford N et al. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob. Agents Chemother.53(2), 557–562 (2009).
  • Robledo IE, Vasquez GJ, Aquino EE, Moland ES, Sante MI, Hanson ND. A novel KPC variant, KPC-6, in a Klebsiella pneumoniae (Kp) isolated in Puerto Rico (PR) C2–3738. Presented at: 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy and the Infectious Diseases Society of America 46th Annual Meeting. Washington, DC, USA, 25–28 October 2008.
  • Kitchel B, Rasheed JK, Patel JB et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob. Agents Chemother.53(8), 3365–3370 (2009).
  • Chen L, Mediavilla JR, Endimiani A et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) variants. J. Clin. Microbiol.49(2), 579–585 (2010).
  • Naas T, Cuzon G, Villegas M-V et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother.52(4), 1257–1263 (2008).
  • Cuzon G, Naas T, Truong H et al. Worldwide diversity of Klebsiella pneumoniae that produce β-lactamase blaKPC-2 gene. Emerg. Infect. Dis.16(9), 1349–1356 (2010).
  • Kitchel B, Rasheed JK, Endimiani A et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.54(10), 4201–4207 (2010).
  • Rice LB, Carias LL, Hutton RA et al. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob. Agents Chemother.52(9), 3427–3429 (2008).
  • Endimiani A, Carias LL, Hujer AM et al. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob. Agents Chemother.52(7), 2680–2682 (2008).
  • Navon-Venezia S, Leavitt A, Schwaber MJ et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob. Agents Chemother.53(2), 818–820 (2009).
  • Pournaras S, Protonotariou E, Voulgari E et al. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J. Antimicrob. Chemother.64(2), 348–352 (2009).
  • Woodford N, Zhang J, Warner M et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J. Antimicrob. Chemother.62(6), 1261–1264 (2008).
  • Kitchel B, Sundin DR, Patel JB. Regional dissemination of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.53(10), 4511–4513 (2009).
  • Qi Y, Wei Z, Ji S et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother. DOI: 10.1093/jac/dkq431 (2010) (Epub ahead of print).
  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.35(1), 147–151 (1991).
  • Lauretti L, Riccio ML, Mazzariol A et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother.43(7), 1584–1590 (1999).
  • Poirel L, Naas T, Nicolas D et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother.44(4), 891–897 (2000).
  • Giakkoupi P, Xanthaki A, Kanelopoulou M et al. VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J. Clin. Microbiol.41(8), 3893–3896 (2003).
  • Kassis-Chikhani N, Decre D, Gautier V et al. First outbreak of multidrug-resistant Klebsiella pneumoniae carrying blaVIM-1 and blaSHV-5 in a French university hospital. J. Antimicrob. Chemother.57(1), 142–145 (2006).
  • Giakkoupi P, Pappa O, Polemis M et al. Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob. Agents Chemother.53(9), 4048–4050 (2009).
  • Morfin-Otero R, Rodriguez-Noriega E, Deshpande LM, Sader HS, Castanheira M. Dissemination of a bla(VIM-2)-carrying integron among Enterobacteriaceae species in Mexico: report from the SENTRY Antimicrobial Surveillance Program. Microb. Drug Resist.15(1), 33–35 (2009).
  • Tato M, Morosini M, García L, Albertí S, Coque MT, Cantón R. Carbapenem heteroresistance in VIM-1 producing-Klebsiella pneumoniae isolates belonging to the same clone: consequences for routine susceptibility testing. J.Clin. Microbiol.48(11), 4089–4093 (2010).
  • Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a β-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother.48(12), 4654–4661 (2004).
  • Toleman MA, Simm AM, Murphy TA et al. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother.50(5), 673–679 (2002).
  • Lee K, Yum JH, Yong D et al. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother.49(11), 4485–4491 (2005).
  • Yong D, Walsh TR, Bell J et al. A novel subgroup metallo β-lactamase, AIM-1, eerges in Pseudomonas aeruginosa from Australia. C2–3928. Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA. 17–20 September 2007.
  • Poirel L, Rodriguez-Martinez J-M, Al Naiemi N, Debets-Ossenkopp YJ, Nordmann P. Characterization of DIM-1, an integron-encoded metallo-β-lactamase from a Pseudomonas stutzeri clinical isolate in The Netherlands. Antimicrob. Agents Chemother.54(6), 2420–2424 (2010).
  • Sekiguchi J-I, Morita K, Kitao T et al. KHM-1, a novel plasmid-mediated metallo-β-lactamase from a Citrobacter freundii clinical isolate. Antimicrob. Agents Chemother.52(11), 4194–4197 (2008).
  • Salabi AE, Toleman MA, Weeks J et al. First report of the metallo-β-lactamase SPM-1 in Europe. Antimicrob. Agents Chemother.54(1), 582 (2010).
  • Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother.53(12), 5046–5054 (2009).
  • Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob. Agents Chemother.54(11), 4914–4916 (2010).
  • Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob. Agents Chemother.55(2), 934–936 (2010).
  • Poirel L, Al Maskari Z, Al Rashdi F, Bernabeu S, Nordmann P. NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. J. Antimicrob. Chemother.66(2), 304–306 (2010).
  • Detection of Enterobacteriaceae isolates carrying metallo-β-lactamase – United States, 2010. MMWR Morb. Mortal. Wkly Rep.59(24), 750 (2010).
  • Peirano G, Ahmed-Bentley J, Woodford N, Pitout J. The characteristics of a metallo-β-lactamase producing Escherichia coli isolated in Canada from a patient with recent travel to India, C1–675a. Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010.
  • Pfeifer Y, Witte W, Holfelder M et al. NDM-1-producing Escherichia coli in Germany. Antimicrob. Agents Chemother55(3), 1318–1319 (2010).
  • Samuelsen O, Thilesen CM, Heggelund L et al. Identification of NDM-1-producing Enterobacteriaceae in Norway. J. Antimicrob. Chemother.66(3), 670–672 (2010).
  • Struelens MJ, Monnet DL, Magiorakos AP, Santos O’Connor F, Giesecke J. New Delhi metallo-β-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill.15(46), 1–10 (2010).
  • Poirel L, Ros A, Carricajo A et al. Extremely drug-resistant Citrobacter freundii isolate producing NDM-1 and other carbapenemases identified in a patient returning from India. Antimicrob. Agents Chemother.55(1), 447–448 (2011).
  • Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-B-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg. Infect. Dis. DOI: 10.3201/eid1701.101358 (2010) (Epub ahead of print).
  • Zarfel G, Hoenigl M, Leitner E et al. Emergence of New Delhi metallo-B-lactamase, Austria. Emerg. Infect. Dis. DOI: 10.3201/eid1701.101331 (2010) (Epub ahead of print).
  • Poirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 832 (2010).
  • Bogaerts P, Verroken A, Jans B, Denis O, Glupczynski Y. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 831–832 (2010).
  • Koh TH, Khoo CT, Wijaya L et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 828 (2010).
  • Hammerum AM, Toleman MA, Hansen F et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 829–830 (2010).
  • Leverstein-Van Hall MA, Stuart JC, Voets GM et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 830–831 (2010).
  • Gottig S, Pfeifer Y, Wichelhaus TA et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect. Dis.10(12), 828–829 (2010).
  • Chihara S, Okuzumi K, Yamamoto Y, Oikawa S, Hishinuma A. First case of New Delhi metallo-β-lactamase 1-producing Escherichia coli infection in Japan. Clin. Infect. Dis.52(1), 153–154 (2011).
  • Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis.11(5), 355–362 (2011).
  • Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10(9), 597–602 (2010).
  • Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J. Antimicrob. Chemother.65(10), 2253–2254 (2010).
  • Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1 producing A. baumannii in China. J. Antimicrob. Chemother. DOI: 10.1093/jac/dkr082 (2011) (Epub ahead of print).
  • Zhang H, Hao Q. Crystal Structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. DOI: fj.11-184036 (2011) (Epub ahead of print).
  • Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob. Agents Chemother.54(1), 24–38 (2010).
  • Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect.12(9), 826–836 (2006).
  • Perez F, Hujer AM, Hujer KM et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother.51(10), 3471–3484 (2007).
  • Bertini A, Poirel L, Bernabeu S et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother.51(7), 2324–2328 (2007).
  • Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob. Agents Chemother.51(4), 1530–1533 (2007).
  • Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect.11(1), 15–23 (2005).
  • Brown S, Amyes SGB. The sequences of seven class D β-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin. Microbiol. Infect.11(4), 326–329 (2005).
  • Heritier C, Poirel L, Fournier P-E et al. Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob. Agents Chemother.49(10), 4174–4179 (2005).
  • Culebras E, Gonzalez-Romo F, Head J et al. Outbreak of Acinetobacter baumannii producing OXA-66 in a Spanish hospital: epidemiology and study of patient movements. Microb. Drug Resist.16(4), 309–315 (2010).
  • Figueiredo S, Poirel L, Croize J, Recule C, Nordmann P. In vivo selection of reduced susceptibility to carbapenems in Acinetobacter baumannii related to ISAba1-mediated overexpression of the natural blaOXA-66 oxacillinase gene. Antimicrob. Agents Chemother.53(6), 2657–2659 (2009).
  • Paton R, Miles RS, Hood J, Amyes SG. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents.2(2), 81–87 (1993).
  • Dalla-Costa LM, Coelho JM, Souza HA et al. Outbreak of carbapenem-resistant Acinetobacter baumannii Producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol.41(7), 3403–3406 (2003).
  • Jeon B-C, Jeong SH, Bae IK et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. J. Clin. Microbiol.43(5), 2241–2245 (2005).
  • Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis.16(1), 35–40 (2010).
  • Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother.45(2), 583–588 (2001).
  • Bonnet R, Marchandin H, Chanal C et al. Chromosome-encoded class D β-lactamase OXA-23 in Proteus mirabilis. Antimicrob. Agents Chemother.46(6), 2004–2006 (2002).
  • Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother.44(6), 1556–1561 (2000).
  • Sevillano E, Gallego L, García-Lobo JM. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathologie Biologie57(6), 493–495 (2009).
  • Da Silva GJ, Quinteira S, Bértolo E et al. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian peninsula. J. Antimicrob. Chemother.54(1), 255–258 (2004).
  • Lolans K, Rice TW, Munoz-Price LS, Quinn JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob. Agents Chemother.50(9), 2941–2945 (2006).
  • Lopez-Otsoa F, Gallego L, Towner KJ et al. Endemic carbapenem resistance associated with OXA-40 carbapenemase among Acinetobacter baumannii isolates from a hospital in Northern Spain. J. Clin. Microbiol.40(12), 4741–4743 (2002).
  • Poirel L, Marque S, Heritier C et al. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother.49(1), 202–208 (2005).
  • Pournaras S, Markogiannakis A, Ikonomidis A et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother.57(3), 557–561 (2006).
  • Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother.50(12), 4114–4123 (2006).
  • Perez F, Hujer AM, Hulten EA et al. Antibiotic resistance determinants in Acinetobacter spp and clinical outcomes in patients from a major military treatment facility. Am. J. Infect. Control38(1), 63–65 (2010).
  • Scott P, Deye G, Srinivasan A et al. An outbreak of multidrug-resistant Acinetobacter baumannii–calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin. Infect. Dis.44(12), 1577–1584 (2007).
  • Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother.48(1), 15–22 (2004).
  • Carrer A, Poirel L, Yilmaz M et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother.54(3), 1369–1373 (2010).
  • Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother.53(12), 5035–5038 (2009).
  • Antonio CS, Neves PR, Medeiros M et al. High prevalence of carbapenem-resistant Acinetobacter baumannii carrying the blaOXA-143 gene in Brazilian hospitals. Antimicrob. Agents Chemother.55, 1322–1323 (2010).
  • Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin. Infect. Dis.40, 1333–1341 (2005).
  • Landman D, Georgescu C, Martin DA, Quale J. Polymyxins revisited. Clin. Microbiol. Rev.21(3), 449–465 (2008).
  • Urban C, Mariano N, Rahal JJ. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob. Agents Chemother.54(6), 2732–2734 (2010).
  • Bratu S, Tolaney P, Karumudi U et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. Chemother.56(1), 128–132 (2005).
  • Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother.65(6), 1119–1125 (2010).
  • Li J, Rayner CR, Nation RL et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother.50(9), 2946–2950 (2006).
  • Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in Acinetobacter and its association with previous colistin therapy. Antimicrob. Agents Chemother.52(1), 351–352 (2008).
  • Owen RJ, Li J, Nation RL, Spelman D. In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J. Antimicrob. Chemother.59(3), 473–477 (2007).
  • Poudyal A, Howden BP, Bell JM et al. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother.62(6), 1311–1318 (2008).
  • Lee J, Patel G, Huprikar S, Calfee DP, Jenkins SG. Decreased susceptibility to polymyxin B during treatment for carbapenem-resistant Klebsiella pneumoniae infection. J. Clin. Microbiol.47(5), 1611–1612 (2009).
  • Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin. Infect. Dis.41(Suppl. 5), S303–S314 (2005).
  • Fritsche TR, Strabala PA, Sader HS, Dowzicky MJ, Jones RN. Activity of tigecycline tested against a global collection of Enterobacteriaceae, including tetracycline-resistant isolates. Diagn. Microbiol. Infect. Dis.52(3), 209–213 (2005).
  • Gordon NC, Wareham DW. A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J. Antimicrob. Chemother.63(4), 775–780 (2009).
  • Endimiani A, Patel G, Hujer KM et al. In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob. Agents Chemother.54(1), 526–529 (2010).
  • Wang YF, Dowzicky MJ. In vitro activity of tigecycline and comparators on Acinetobacter spp. isolates collected from patients with bacteremia and MIC change during the Tigecycline Evaluation and Surveillance Trial, 2004 to 2008. Diagn. Microbiol. Infect. Dis.68(1), 73–79 (2010).
  • Hussein K, Sprecher H, Mashiach T et al. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect. Control Hosp. Epidemiol.30(7), 666–671 (2009).
  • Anthony KB, Fishman NO, Linkin DR et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin. Infect. Dis.46(4), 567–570 (2008).
  • Peleg AY, Potoski BA, Rea R et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother.59(1), 128–131 (2007).
  • Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother.59(4), 772–774 (2007).
  • DiPersio JR, Dowzicky MJ. Regional variations in multidrug resistance among Enterobacteriaceae in the USA and comparative activity of tigecycline, a new glycylcycline antimicrobial. Int. J. Antimicrob. Agents.29(5), 518–527 (2007).
  • Nguyen M, Eschenauer GA, Bryan M et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn. Microbiol. Infect. Dis.67(2), 180–184 (2010).
  • Cunha BA, McDermott B, Nausheen S. Single daily high-dose tigecycline therapy of a multidrug-resistant (MDR) Klebsiella pneumoniae and Enterobacter aerogenes nosocomial urinary tract infection. J. Chemother.19(6), 753–754 (2007).
  • Falagas ME, Kanellopoulou MD, Karageorgopoulos DE et al. Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin. Eur. J. Clin. Microbiol. Infect. Dis.27(6), 439–443 (2008).
  • Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int. J. Antimicrob. Agents.34(2), 111–120 (2009).
  • Rodriguez-Rojas A, Couce A, Blazquez J. Frequency of spontaneous resistance to fosfomycin combined with different antibiotics in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.54(11), 4948–4949 (2010).
  • Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of β-lactam antibiotics. Crit. Care Med.37(6), 2071–2078 (2009).
  • Perrott J, Mabasa VH, Ensom MH. Comparing outcomes of meropenem administration strategies based on pharmacokinetic and pharmacodynamic principles: a qualitative systematic review. Ann. Pharmacother.44(3), 557–564 (2010).
  • Bulik CC, Nicolau DP. In vivo efficacy of simulated human dosing regimens of prolonged-infusion doripenem against carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother.54(10), 4112–4115 (2010).
  • Crandon JL, Kuti JL, Jones RN, Nicolau DP. Comparison of 2002–2006 OPTAMA programs for US hospitals: focus on Gram-negative resistance. Ann. Pharmacother.43(2), 220–227 (2009).
  • Bulik CC, Christensen H, Li P et al. Comparison of the activity of a human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother.54(2), 804–810 (2010).
  • Livermore DM, Mushtaq S, Warner M, Miossec C, Woodford N. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum β-lactamases and carbapenemases. J. Antimicrob. Chemother.62(5), 1053–1056 (2008).
  • Endimiani A, Choudhary Y, Bonomo RA. In vitro Activity of NXL104 in combination with β -lactams against Klebsiella pneumoniae isolates producing KPC carbapenemases. Antimicrob. Agents Chemother.53(8), 3599–3601 (2009).
  • Mushtaq S, Warner M, Williams G, Critchley I, Livermore DM. Activity of chequerboard combinations of ceftaroline and NXL104 versus β-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother.65(7), 1428–1432 (2010).
  • Livermore DM, Mushtaq S, Warner M et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother.55(1), 390–394 (2011).
  • Mushtaq S, Warner M, Livermore DM. In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J. Antimicrob. Chemother.65(11), 2376–2381 (2010).
  • Papp-Wallace KM, Bethel CR, Distler AM et al. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob. Agents Chemother.54(2), 890–897 (2010).
  • Endimiani A, Bethel C, Choudhary Y, Bonomo RA. In vitro activity of penem-1 in combination with β-lactams against blaKPC-possessing Klebsiella pneumoniae isolates. Antimicrob. Agents Chemother.54(4), 1650–1651 (2010).
  • Endimiani A, Hujer KM, Hujer AM et al. ACHN-490, a neoglycoside with potent in vitro activity against multidrug-resistant Klebsiella pneumoniae isolates. Antimicrob. Agents Chemother.53(10), 4504–4507 (2009).
  • Landman D, Babu E, Shah N et al. Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City. J. Antimicrob. Chemother.65(10), 2123–2127 (2010).
  • Aggen JB, Armstrong ES, Goldblum AA et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob. Agents Chemother.54(11), 4636–4642 (2010).
  • Livermore DM, Mushtaq S, Warner M et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J. Antimicrob. Chemother.66(1), 48–53 (2011).
  • Vaara M, Siikanen O, Apajalahti J, Frimodt-Moller N, Vaara T. Susceptibility of carbapenemase-producing strains of Klebsiella pneumoniae and Escherichia coli to the direct antibacterial activity of NAB739 and to the synergistic activity of NAB7061 with rifampicin and clarithromycin. J. Antimicrob. Chemother.65(5), 942–945 (2010).
  • Mushtaq S, Warner M, Livermore D. Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. J. Antimicrob. Chemother.65(2), 266–270 (2010).
  • Elemam A, Rahimian J, Mandell W. Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clin. Infect. Dis.49(2), 271–274 (2009).
  • Perez F, Endimiani A, Ray AJ et al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. J. Antimicrob. Chemother.65(8), 1807–1818 (2010).
  • Aschbacher R, Pagani L, Doumith M et al. Metallo-β-lactamases among Enterobacteriaceae from routine samples in an Italian tertiary care hospital and long-term care facilities during 2008. Clin. Microbiol. Infect.17(2), 181–189 (2010).
  • Boucher H, Talbot G, Bradley J et al. Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clin. Infect. Dis.48(1), 1–12 (2009).
  • Tillotson G. Stimulating antibiotic development. Lancet Infect. Dis.10(1), 2–3 (2010).
  • Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect. Control Hosp. Epidemiol.29(10), 966–968 (2008).
  • Ben David D, Maor Y, Keller N et al. Potential role of active surveillance in the control of a hospital-wide outbreak of carbapenem-resistant Klebsiella pneumoniae infection. Infect. Control Hosp. Epidemiol.31(6), 620–626 (2010).
  • Kochar S, Sheard T, Sharma R et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect. Control Hosp. Epidemiol.30(5), 447–452 (2009).
  • Munoz-Price LS, Hayden MK, Lolans K et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae at a long-term acute care hospital. Infect. Control Hosp. Epidemiol.31(4), 341–347 (2010).
  • Bilavsky E, Schwaber MJ, Carmeli Y. How to stem the tide of carbapenemase-producing Enterobacteriaceae?: proactive versus reactive strategies. Curr. Opin. Infect. Dis.23(4), 327–331 (2010).
  • Carmeli Y, Akova M, Cornaglia G et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin. Microbiol. Infect.16(2), 102–111 (2010).
  • Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb. Mortal. Wkly Rep.58(10), 256–260 (2009).
  • Yu Y-S, Du X-X, Zhou Z-H, Chen Y-G, Li L-J. First Isolation of blaIMI-2 in an Enterobacter cloacae clinical isolate from China. Antimicrob. Agents Chemother.50(4), 1610–1611 (2006).
  • Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg. Infect. Dis.11(2), 260–264 (2005).
  • Wachino JC, Doi Y, Yamane K et al. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A β-lactamase, GES-4, possessing a single G170S substitution in the Ω-Loop. Antimicrob. Agents Chemother.48(8), 2905–2910 (2004).
  • Ambretti S, Gaibani P, Caroli F, Miragliotta L, Sambri V. A carbapenem-resistant Klebsiella pneumoniae isolate harboring KPC-1 from Italy. New Mirobiol.33(3), 281–282 (2010).
  • Robledo IE, Aquino EE, Sante MI et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother.54(3), 1354–1357 (2010).
  • Woodford N, Tierno PM Jr, Young K et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother.48(12), 4793–4799 (2004).
  • Robledo IE, Moland ES, Aquino EA et al. First report of a KPC-4 and CTX-M producing K. pneumoniae (KP) isolated from Puerto Rico. Presented at: 47th InterScience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, USA, 17–20 September 2007.
  • Palepou MF, Woodford N, Hope R et al. Novel class A carbapenemase, KPC-4, in an Enterobacter isolate from Scotland. 1134_01_20. Presented at: 15th European Congress of Clinical Microbiology and Infectious Diseases. Copenhagen, Denmark, 2–5 April 2005.
  • Gregory CJ, Llata E, Stine N et al. Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect. Control Hosp. Epidemiol.31(5), 476–484 (2010).
  • Kaase M, Normann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J. Antimicrob. Chemother. DOI: 10.1093/jac/dkr135 (2011) (Epub ahead of print).
  • Evans BA, Brown S, Hamouda A, Findlay J, Amyes SGB. Eleven novel OXA-51-like enzymes from clinical isolates of Acinetobacter baumannii. Clin. Microbiol. Infect.13(11), 1137–1138 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.