1,451
Views
96
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory therapy for severe influenza

, &
Pages 807-822 | Published online: 10 Jan 2014

References

  • Thompson WW, Shay DK, Weintraub E et al. Influenza-associated hospitalizations in the United States. JAMA292, 1333–1340 (2004).
  • Johnson NP, Mueller J. Updating the accounts: Global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med.76(1), 105–115 (2002).
  • Donaldson LJ, Rutter PD, Ellis BM et al. Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study. BMJ339, b5213 (2009).
  • Baigent SJ, McCauley JW. Influenza type A in humans, mammals and birds: Determinants of virus virulence, host-range and interspecies transmission. Bioessays25(7), 657–671 (2003).
  • To K, Chan PK, Chan K et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J. Med. Virol.63(3), 242–246 (2001).
  • Tran TH, Nguyen TL, Nguyen TD et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N. Engl. J. Med.350(12), 1179–1188 (2004).
  • Beigel JH, Farrar J, Han AM et al. Avian Influenza A (H5N1) Infection in humans. N. Engl. J. Med.353(13), 1374–1385 (2005).
  • Abdel-Ghafar A-N, Chotpitayasunondh T, Gao Z et al. Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med.358(3), 261–273 (2008).
  • Gill JR, Sheng Z-M, Ely SF et al. Pulmonary pathological findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch. Pathol. Lab. Med.134(2), 235–253 (2010).
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N. Engl. J. Med.342, 1334–1349 (2000).
  • Bernard GR. Acute respiratory distress syndrome: A historical perspective. Am. J. Respir. Crit. Care Med.172(7), 798–806 (2005).
  • Mauad T, Hajjar LA, Callegari GD et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am. J. Respir. Crit. Care Med.181, 72–79 (2010).
  • Zambon MC. The pathogenesis of influenza in humans. Rev. Med. Virol.11(4), 227–241 (2001).
  • Webster RG, Rott R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell50(5), 665–666 (1987).
  • Puthavathana P, Auewarakul P, Charoenying PC et al. Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J. Gen. Virol.86(Pt 2), 423–433 (2005).
  • Kalthoff D, Globig A, Beer M. (Highly pathogenic) avian influenza as a zoonotic agent. Vet. Microbiol.140(3–4), 237–245 (2010).
  • Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science293(5536), 1840–1842 (2001).
  • Cheng X, Xu Q, Song E, Yang C-F, Kemble G, Jin H. The hemagglutinin protein of influenza A/Vietnam/1203/2004 (H5N1) contributes to hyperinduction of proinflammatory cytokines in human epithelial cells. Virology406(1), 28–36 (2010).
  • Tumpey TM, García-Sastre A, Taubenberger JK et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol.79(23), 14933–14944 (2005).
  • Chen CJ, Chen GW, Wang CH, Huang CH, Wang YC, Shih SR. Differential localization and function of PB1-F2 derived from different strains of influenza A virus. J. Virol.84(19), 10051–10062 (2010).
  • Basler CF, Aguilar PV. Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res.79(3), 166–178 (2008).
  • Chen W, Calvo PA, Malide D et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med.7(12), 1306–1312 (2001).
  • Zamarin D, Ortigoza MB, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol.80(16), 7976–7983 (2006).
  • McAuley JL, Hornung F, Boyd KL et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe2(4), 240–249 (2007).
  • Garten RJ, Davis T, Russell CA et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science325(5939), 197–201 (2009).
  • Hai R, Schmolke M, Varga ZT et al. PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol.84(9), 4442–4450 (2010).
  • Ozawa M, Basnet S, Burley LM, Neumann G, Hatta M, Kawaoka Y. Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J. Virol.85(9), 4596–4601 (2011).
  • McAuley JL, Zhang K, McCullers JA. The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. J. Virol.84(1), 558–564 (2010).
  • Conenello GM, Zamarin D, Perrone LA et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog.3(10), 1414–1421 (2007).
  • Conenello GM, Tisoncik JR, Rosenzweig E, Varga ZT, Palese P, Katze MG. A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J. Virol.85(2), 652–662 (2011).
  • Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog.5(1), e1000252 (2009).
  • Fornek JL, Gillim-Ross L, Santos C et al. A single-amino-acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T-cell activation in mice. J. Virol.83(21), 11102–11115 (2009).
  • Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J. Virol.85(1), 357–365 (2011).
  • Soubies SM, Volmer C, Croville G et al. Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. J. Virol.84(13), 6733–6747 (2010).
  • Illyushina NA, Seiler JP, Rehg JE, Webster RG, Govorkova EA. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. PLoS Pathog.6(5), e1000933 (2010).
  • Steel J, Lowen AC, Pena L et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol.83(4), 1742–1753 (2009).
  • Hai R, Martínez-Sobrido L, Fraser KA, Ayllon J, García-Sastre A, Palese P. Influenza B virus NS1-truncated mutants: live-attenuated vaccine approach. J. Virol.82(21), 10580–10590 (2008).
  • Zhou B, Li Y, Belser JA, Pearce MB et al. NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets. Vaccine28(50), 8015–8025 (2010).
  • Volmer R, Mazel-Sanchez B, Volmer C, Soubies SM, Guérin J-L. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells. J. Gen. Virol.89(10), 2359–2376 (2009).
  • Fernandez-Sesma A. The influenza virus NS1 protein: inhibitor of innate and adaptive immunity. Infect. Disord. Drug Targets7(4), 336–343 (2007).
  • Chen Z, Krug RM. Selective nuclear export of viral mRNAs in influenza-virus-infected cells. Trends Microbiol.8(8), 376–383 (2000).
  • Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J. Virol.81(13), 7011–7021 (2007).
  • Mibayashi M, Martínez-Sobrido L, Loo YM, Cárdenas WB, Gale M Jr, García-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol.81(2), 514–524 (2007).
  • Hayman A, Comely S, Lackenby A et al. NS1 proteins of avian influenza A viruses can act as antagonists of the human α/β interferon response. J. Virol.81(5), 2318–2327 (2007).
  • Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3´ end formation of cellular pre-mRNAs. Mol. Cell1(7), 991–1000 (1998).
  • Min JY, Krug RM. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2’–5’ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA103(18), 7100–7105 (2006).
  • Min JY, Li S, Sen GC, Krug RM. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology363(1), 236–243 (2007).
  • Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med.8(9), 950–954 (2002).
  • Obenauer JC, Denson J, Mehta PK et al. Large-scale sequence analysis of avian influenza isolates. Science311(5767), 1576–1580 (2006).
  • Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA105(11), 4381–4386 (2008).
  • Bouvier NM, Lowen AC, Palese P. Oseltamivir-resistant influenza A viruses are transmitted efficiently among guinea pigs by direct contact but not by aerosol. J. Virol.82(20), 10052–10058 (2008).
  • Bloom JD. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science328(5983), 1272–1275 (2010).
  • Deyde V, Xu X, Bright R et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J. Infect. Dis.196(2), 249–257 (2007).
  • Sheu TG, Deyde VM, Okomo-Adhiambo M et al. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob. Agents Chemother.52(9), 3284–3292 (2008).
  • Collins PJ, Haire LF, Lin YP et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature453(7199), 1258–1261 (2008).
  • Le QM, Kiso M, Someya K et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature437(7062), 1108 (2005).
  • de Jong MD, Thanh TT, Khanh TH et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med.353(25), 2667–2672 (2005).
  • Kohno S, Kida H, Mizuguchi M, Shimada J. Efficacy and safety of intravenous peramivir for treatment of seasonal influenza virus infection. Antimicrob. Agents Chemother.54(11), 4568–4574 (2010).
  • Castillo R, Holland LE, Boltz DA. Peramivir and its use in H1N1 influenza. Drugs Today (Barc.)46(6), 399–408 (2010).
  • Gaur AH, Bagga B, Barman S et al. Intravenous zanamivir for oseltamivir-resistant 2009 H1N1 Influenza. N. Engl. J. Med.362(1), 88–89 (2010).
  • Smith JR, Ariano RE, Toovey S. The use of antiviral agents for the management of severe influenza. Crit. Care Med.38(4), e43–e51 (2010).
  • Armitage JM, Williams SJ. Inhaler technique in the elderly. Age and Ageing17(4), 275–278 (1988).
  • Medeiros R, Rameix-Welti MA, Lorin V et al. Failure of zanamivir therapy for pneumonia in a bone-marrow transplant recipient infected by a zanamivir-sensitive influenza A (H1N1) virus. Antiviral Ther.12(4), 571–576 (2007).
  • Da Dalt L, Calistri A, Chillemi C et al. Oseltamivir resistant pandemic (H1N1) 2009 treated with nebulized zanamivir. Emerg. Infect. Dis.16(11), 1813–1815 (2010).
  • Hayden F. Developing new antiviral agents for influenza treatment: What does the future hold? Clin. Infect. Dis.48(S1), S3–S13 (2009).
  • Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza. Antivir. Chem. Chemother.21(2), 71–84 (2010).
  • Moscona A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med.36(10), 953–956 (2009).
  • Murphy BR, Baron S, Chalhub EG, Uhlendorf CP, Chanock RM. Temperature-sensitive mutants of influenza virus. IV. Induction of interferon in the nasopharynx by wild-type and a temperature-sensitive recombinant virus. J. Infect. Dis.128(4), 488–493 (1973).
  • Aoki FY, Macleod MD, Paggiaro P et al. Early administration of oral oseltamivir increases the benefits of influenza treatment. J. Antimicrob. Chemother.51(1), 123–129 (2003).
  • Kandun IN, Tresnaningsih E, Purba WH et al. Factors associated with case fatality of human H5N1 virus infections in Indonesia: a case series. Lancet372, 744–749 (2008).
  • Jain S, Kamimoto L, Bramley AM et al. Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N. Engl. J. Med.361(20), 1935–1944 (2009).
  • To K, Hung I, Li I et al. Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection. Clin. Infect. Dis.50(6), 850–859 (2010).
  • Enserink M. Old drugs losing effectiveness against flu; could statins fill gap? Science309(5743), 1976–1977 (2005).
  • Fedson DS. Meeting the challenge of influenza pandemic preparedness in developing countries. Emerg. Infect. Dis.15(3), 365–371 (2009).
  • Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am. J. Pathol.156(6), 1951–1959 (2000).
  • Carey MA, Bradbury JA, Seubert JM et al. Contrasting effects of cyclooxygenase-1 (COX-1) and COX-2 deficiency on the host response to influenza A viral infection. J. Immunol.175(10), 6878–6884 (2005).
  • Kobasa D, Jones SM, Shinya K et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature445(7125), 319–323 (2007).
  • Perrone LA, Plowden JK, García-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog.4(8), e1000115 (2008).
  • Perrone L, Szretter K, Katz J, Mizgerd J, Tumpey T. Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus. J. Infect. Dis.202(8), 1161–1170 (2010).
  • Lin KL, Sweeney S, Kang BD, Ramsburg E, Gunn MD. CCR2-antagonist prophylaxis reduces pulmonary immune pathology and markedly improves survival during influenza infection. J. Immunol.186(1), 508–515 (2011).
  • Peiris J, Yu WC, Leung CW et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet363(9409), 617–619 (2004).
  • de Jong MD, Simmons CP, Thanh TT et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med.12(10), 1203–1207 (2006).
  • Chan MCW, Cheung CY, Chui WH et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir. Res.6, 135–147 (2005).
  • Cheung C, Poon L, Lau A et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet360(9348), 1831–1837 (2002).
  • Chan MC, Chan RW, Yu WC et al. Tropism and innate host responses of the 2009 pandemic H1N1 influenza virus in ex vivo and in vitro cultures of human conjunctiva and respiratory tract. Am. J. Pathol.176(4), 1828–1840 (2010).
  • Woo P, Tung E, Chan K et al. Cytokine profiles induced by the novel swine origin influenza A/H1N1 virus: Implications for treatment strategies. J. Infect. Dis.201(3), 346–353 (2010).
  • Schmitz N, Kurrer M, Bachmann MF, Kopf M. Interleukin-1 Is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol.79(10), 6441–6448 (2005).
  • Belisle SE, Tisoncik JR, Korth MJ et al. Genomic profiling of tumor necrosis factor α (TNF-α) receptor and interleukin-1 receptor knockout mice reveals a link between TNF-α signaling and increased severity of 1918 pandemic influenza virus infection. J. Virol.84(24), 12576–12588 (2010).
  • Szretter KJ, Gangappa S, Lu X et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J. Virol.81(6), 2736–2744 (2007).
  • Salomon R, Hoffmann E, Webster RG. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc. Natl. Acad. Sci. USA104(30), 12479 –12481 (2007).
  • Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol.180(4), 2562–2572 (2008).
  • Aldridge JR, Moseley CE, Boltz DA et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA106(13), 5306–5311 (2009).
  • Pawliczak R, Logun C, Madara P et al. Influence of IFN-γ on gene expression in normal human bronchial epithelial cells: modulation of IFN-γ effects by dexamethasone. Physiol. Genomics23(1), 28–45 (2005).
  • Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS. Chest136(6), 1631–1643 (2009).
  • Almawi WY, Beyhum HN, Rahme AA, Rieder MJ. Regulation of cytokine and cytokine receptor expression by glucocorticoids. J. Leukocyte Biol.60(5), 563–572 (1996).
  • Ottolini M, Blanco J, Porter D et al. Combination anti-inflammatory and antiviral therapy of influenza in a cotton rat model. Pediatr. Pulmonol.36(4), 290–294 (2003).
  • Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W et al. Human disease from influenza A (H5N1), Thailand, 2004.(Research). Emerg. Infect. Dis.11(2), 201–209 (2005).
  • Quispe-Laime A, Bracco J, Barberio P et al. H1N1 influenza A virus-associated acute lung injury: response to combination oseltamivir and prolonged corticosteroid treatment. Intensive Care Med.36(1), 33–41 (2010).
  • Sugiyama K, Shirai R, Mukae H et al. Differing effects of clarithromycin and azithromycin on cytokine production in murine dendritic cells. Clin. Exp. Immunol.147, 540–546 (2007).
  • Hodge S, Hodge G, Jersmann H et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.178, 139–148 (2008).
  • Amsden GW. Anti-inflammatory effects of macrolides – an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J. Antimicrob. Chemother.55(1), 10–21 (2005).
  • Yamaya M, Shinya K, Hatachi Y et al. Clarithromycin inhibits type A seasonal influenza virus infection in human airway epithelial cells. J. Pharmacol. Exp. Therapeutics333(1), 81–90 (2010).
  • Sato K, Suga M, Akaike T et al. Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am. J. Respir. Crit. Care Med.157(3), 853–857 (1998).
  • McCullers JA. Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev.19(3), 571–582 (2006).
  • Smith MW, Schmidt JE, Rehg JE, Orihuela C, McCullers JA. Induction of pro- and anti- inflammatory molecules in a mouse model of pneumococcal pneumonia following influenza. Comp. Med.57(1), 82–89 (2007).
  • McCullers JA. Effect of antiviral treatment on the outcome of secondary bacterial pneumonia after influenza. J. Infect. Dis.190(3), 519–526 (2004).
  • Karlström Å, Boyd KL, English BK, McCullers JA. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J. Infect. Dis.199(3), 311–319 (2009).
  • Low D. Reducing antibiotic use in influenza: challenges and rewards. Clin. Microbiol. Infect.14(4), 298–306 (2008).
  • Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol.2(5), 364–371 (2002).
  • Hanauer SB, Sandborn WJ, Rutgeerts P et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology130(2), 323–333 (2006).
  • Beutler B, Milsark I, Cerami A. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science229(4716), 869–871 (1985).
  • Fisher CJ, Agosti JM, Opal SM et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N. Engl. J. Med.334(26), 1697–1702 (1996).
  • Peper RL, Van Campen H. Tumor necrosis factor as a mediator of inflammation in influenza A viral pneumonia. Microb. Pathog.19(3), 175–183 (1995).
  • Hussell T, Pennycook A, Openshaw P. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur. J. Immunol.31(9), 2566–2573 (2001).
  • Askling J, Dixon W. The safety of anti-tumor necrosis factor therapy in rheumatoid arthritis. Curr. Opin. Rheumatol.20(2), 138–144 (2008).
  • Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest.108(1), 15–23 (2001).
  • Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Internat. Immunopharmacol.2(5), 603–630 (2002).
  • Lee S, Cheung C, Nicholls J et al. Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: a mechanism for the pathogenesis of avian influenza H5N1 infection. J. Infect. Dis.198(4), 525–535 (2008).
  • Zheng B, Chan K, Lin Y et al. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc. Natl. Acad. Sci. USA105(23), 8091–8096 (2008).
  • Carey MA, Bradbury JA, Rebolloso YD et al. Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice. PLoS ONE5(7), e11610 (2010).
  • Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol.174(8), 5033–5039 (2005).
  • Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation. Circ. Res.107(10), 1170–1184 (2010).
  • Cilloniz C, Pantin-Jackwood MJ, Ni C et al. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. J. Virol.84(15), 7613–7624 (2010).
  • Fedson DS. Pandemic influenza: a potential role for statins in treatment and prophylaxis. Clin. Infect. Dis.43(2), 199–205 (2006).
  • Rosenson RS. Pluripotent mechanisms of cardioprotection with HMG-CoA reductase inhibitor therapy. Am. J. Cardiovasc. Drugs1(6), 411–420 (2001).
  • Jacobson JR. Statins in endothelial signaling and activation. Antiox. Redox. Signal.11(4), 811–821 (2009).
  • Yang J, Huang C, Yang J, Jiang H, Ding J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: a key role for TLR4/NF-κB signaling pathway. Mol. Cell. Biochem.345(44), 189–195 (2010).
  • Wang H, Bloom O, Zhang M et al. HMGB-1 as a late mediator of endotoxin lethality in mice. Science285, 248–251 (1999).
  • Sha Y, Zmijewski J, Xu Z, Abraham E. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J. Immunol.180(4), 2531–2537 (2008).
  • Han KH, Ryu J, Hong KH et al. HMG-CoA reductase inhibition reduces monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated monocyte recruitment in vivo.Circulation111, 1439–1447 (2005).
  • Kwong JC, Li P, Redelmeier DA. Influenza morbidity and mortality in elderly patients receiving statins: a cohort study. PLoS ONE4(11), e8087 (2009).
  • Muller S, Scaffidi P, Degryse B et al. The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J.20(16), 4337–4340 (2001).
  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418(6894), 191–195 (2002).
  • Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J. Intern. Med.255(3), 320–331 (2004).
  • Yang H, Ochani M, Li J et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. USA101(1), 296–301 (2004).
  • Andersson U, Erlandsson-Harris H. HMGB1 is a potent trigger of arthritis. J. Intern. Med.255(3), 344–350 (2004).
  • Yang H, Wang H, Czura CJ, Tracey KJ. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res.8(6), 469–472 (2002).
  • Alleva LM, Budd AC, Clark IA. Systemic release of high mobility group box 1 protein during severe murine influenza. J. Immunol.181(2), 1454–1459 (2008).
  • Finney RSH, Somers GH. The anti-inflammatory activity of glycyrrhetinic acid and derivatives. J. Pharmacol.10, 613–620 (1959).
  • Mollica L, De Marchis F, Spitaleri A et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol.14(4), 431–441 (2007).
  • Abe N, Ebina T, Ishida N. Interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. Microbiol. Immunol.26(6), 535–539 (1982).
  • Utsunomiya T, Kobayashi M, Pollard R, Suzuki F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob. Agents Chemother.41(3), 551–556 (1997).
  • Wolkerstorfer A, Kurz H, Bachhofner N, Szolar OH. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Res.83(2), 171–178 (2009).
  • Ni YF, Kuai JK, Lu ZF et al. Glycyrrhizin treatment is associated with attenuation of lipopolysaccharide-induced acute lung injury by inhibiting cyclooxygenase-2 and inducible nitric oxide synthase expression. J. Surg. Res.165(1), e29–e35 (2011).
  • Tsoyi K, Jang HJ, Nizamutdinova IT et al. Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Brit. J. Pharmacol.162(7), 1498–1508 (2011).
  • Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature454(7203), 470–477 (2008).
  • Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-γ activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol.23(4), 343–352 (2010).
  • Cunard R, Ricote M, DiCampli D et al. Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors. J. Immunol.168(6), 2795–2802 (2002).
  • Budd A, Alleva L, Alsharifi M et al. Increased survival after gemfibrozil treatment of severe mouse influenza. Antimicrob. Agents Chemother.51(8), 2965–2968 (2007).
  • Alleva LM, Cai C, Clark IA. Using complementary and alternative medicines to target the host response during severe influenza. Evid. Based Complement Alternat. Med.7(4), 501–510 (2010).
  • Zhao S, Ye H, Zhou H, Nie S, Li Q. Gemfibrozil reduces release of tumor necrosis factor-[α] in peripheral blood mononuclear cells from healthy subjects and patients with coronary heart disease. Clinica Chimica Acta332(1–2), 61–67 (2003).
  • Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res.49(10), 497–505 (2000).
  • Haraguchi G, Kosuge H, Maejima Y et al. Pioglitazone reduces systematic inflammation and improves mortality in apolipoprotein E knockout mice with sepsis. Intensive Care Med.34(7), 1304–1312 (2008).
  • Di Gregorio GB, Yao-Borengasser A, Rasouli N et al. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues. Diabetes54(8), 2305–2313 (2005).
  • Moseley CE, Webster RG, Aldridge JR. Original Article: Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respi. Viruses4(5), 307–311 (2010).
  • Zhao X, Zmijewski JW, Lorne E et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of ALI. Am. J. Physiol. Lung Cell. Mol. Physiol.295(3), L497–L504 (2008).
  • Pitocco D, Giubilato S, Zaccardi F et al. Pioglitazone reduces monocyte activation in type 2 diabetes. Acta Diabetol.46, 75–77 (2009).
  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation6(2), 230–247 (1968).
  • Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin. Biol. Ther.9(10), 1259–1270 (2009).
  • Matthay MA, Thompson BT, Read EJ et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest138(4), 965–972 (2010).
  • Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheumat.56(4), 1175–1186 (2007).
  • Nemeth K, Leelahavanichkul A, Yuen PST et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med.15(1), 42–49 (2009).
  • Mei SHJ, Haitsma JJ, Dos Santos CC et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am. J. Respir. Crit. Care Med.182(8), 1047–1057 (2010).
  • Ortiz LA, DuTreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA104(26), 11002–11007 (2007).
  • Xu J, Woods CR, Mora AL et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.293(1), L131–L141 (2007).
  • Gupta N, Su X, Popov B et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol.179(3), 1855–1863 (2007).
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol.8(9), 726–736 (2008).
  • Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. USA106(38), 16357–16362 (2009).
  • Jones CA, London NR, Chen H et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med.14(4), 448–453 (2008).
  • London NR, Zhu W, Bozza FA et al. Targeting robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Science Translat. Med.2(23), 23ra19 (2010).
  • Yancopoulos GD, Davis S, Gale NW et al. Vascular-specific growth factors and blood vessel formation. Nature407(6801), 242–248 (2000).
  • Davis S, Aldrich TH, Jones PF et al. Isolation of angiopoietin-1, a ligand for the tie2 receptor, by secretion-trap expression cloning. Cell87(7), 1161–1169 (1996).
  • Thurston G, Suri C, Smith K et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science286(5449), 2511–2514 (1999).
  • Thurston G, Rudge JS, Ioffe E et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med.6(4), 460–463 (2000).
  • Gamble JR, Drew J, Trezise L et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ. Res.87(7), 603–607 (2000).
  • Kim I, Moon SO, Park SK, Chae SW, Koh GY. Angiopoietin-1 reduces VEGF- stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ. Res.89(6), 477–479 (2001).
  • Parikh SM, Mammoto T, Schultz A et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med.3(3), e46 (2006).
  • Fiedler U, Reiss Y, Scharpfenecker M et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat. Med.12(2), 235–239 (2006).
  • Witzenbichler B, Westermann D, Knueppel S, Schultheiss H, Tschope C. Protective role of angiopoietin-1 in endotoxic shock. Circulation111(1), 97–105 (2005).
  • McCarter SD, Mei SHJ, Lai PFH et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am. J. Respir. Crit. Care Med.175(10), 1014–1026 (2007).
  • Huang YQ, Sauthoff H, Herscovici P et al. Angiopoietin-1 increases survival and reduces the development of lung edema induced by endotoxin administration in a murine model of acute lung injury. Crit. Care Med.36(1), 262–267 (2008).
  • Mei SHJ, McCarter SD, Deng Y et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin-1. PLoS Med.4(9), e269 (2007).
  • Kim DH, Jung YJ, Lee AS et al. COMP-angiopoietin-1 decreases lipopolysacharide-induced acute kidney injury. Kidney Int.76, 1180–1191 (2009).
  • Van Slyke P, Alami J, Martin D et al. Acceleration of diabetic wound healing by an angiopoietin peptide mimetic. Tissue Eng. A.15, 126–1280 (2009).
  • Sheu TG, Fry AM, Garten RJ et al. Dual resistance to adamantanes and oseltamivir among seasonal influenza A (H1N1) viruses: 2008–2010. J. Infect. Dis.203(1), 13–17 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.