124
Views
21
CrossRef citations to date
0
Altmetric
Review

Immunomodulation in Plasmodium falciparum malaria: experiments in nature and their conflicting implications for potential therapeutic agents

&
Pages 1343-1356 | Published online: 10 Jan 2014

References

  • Croft AM, Bager P, Kumar S. Helminth therapy (worms) for allergic rhinitis. Cochrane Database Syst. Rev. 4, CD009238 (2012).
  • Riley EM, Wahl S, Perkins DJ, Schofield L. Regulating immunity to malaria. Parasite Immunol. 28(1–2), 35–49 (2006).
  • Artavanis-Tsakonas K, Tongren JE, Riley EM. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin. Exp. Immunol. 133(2), 145–152 (2003).
  • McCall MB, Sauerwein RW. Interferon-g – central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J. Leukoc. Biol. 88(6), 1131–1143 (2010).
  • Clark IA, Budd AC, Alleva LM, Cowden WB. Human malarial disease: a consequence of inflammatory cytokine release. Malar. J. 5, 85 (2006).
  • Kurtzhals JA, Adabayeri V, Goka BQ et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351(9118), 1768–1772 (1998).
  • Day NP, Hien TT, Schollaardt T et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J. Infect. Dis. 180(4), 1288–1297 (1999).
  • Dodoo D, Omer FM, Todd J, Akanmori BD, Koram KA, Riley EM. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J. Infect. Dis. 185(7), 971–979 (2002).
  • Erdman LK, Kain KC. Taking the sting out of malaria. Immunity 35(2), 149–151 (2011).
  • Coban C, Ishii KJ, Kawai T et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201(1), 19–25 (2005).
  • Parroche P, Lauw FN, Goutagny N et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl Acad. Sci. USA 104(6), 1919–1924 (2007).
  • Wu X, Gowda NM, Kumar S, Gowda DC. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 184(8), 4338–4348 (2010).
  • Perry JA, Rush A, Wilson RJ, Olver CS, Avery AC. Dendritic cells from malaria-infected mice are fully functional APC. J. Immunol. 172(1), 475–482 (2004).
  • Perry JA, Olver CS, Burnett RC, Avery AC. Cutting edge: the acquisition of TLR tolerance during malaria infection impacts T cell activation. J. Immunol. 174(10), 5921–5925 (2005).
  • Riley EM. Is T-cell priming required for initiation of pathology in malaria infections? Immunol. Today 20(5), 228–233 (1999).
  • Su Z, Stevenson MM. Central role of endogenous γ interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect. Immun. 68(8), 4399–4406 (2000).
  • Winkler S, Willheim M, Baier K et al. Frequency of cytokine-producing T cells in patients of different age groups with Plasmodium falciparum malaria. J. Infect. Dis. 179(1), 209–216 (1999).
  • Torre D, Speranza F, Giola M, Matteelli A, Tambini R, Biondi G. Role of Th1 and Th2 cytokines in immune response to uncomplicated Plasmodium falciparum malaria. Clin. Diagn. Lab. Immunol. 9(2), 348–351 (2002).
  • Torre D, Giola M, Speranza F, Matteelli A, Basilico C, Biondi G. Serum levels of interleukin-18 in patients with uncomplicated Plasmodium falciparum malaria. Eur. Cytokine Netw. 12(2), 361–364 (2001).
  • Luty AJ, Lell B, Schmidt-Ott R et al. Interferon-γ responses are associated with resistance to reinfection with Plasmodium falciparum in young African children.J. Infect. Dis. 179(4), 980–988 (1999).
  • Amani V, Vigário AM, Belnoue E et al. Involvement of IFN-γ receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur. J. Immunol. 30(6), 1646–1655 (2000).
  • Coban C, Ishii KJ, Uematsu S et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. 19(1), 67–79 (2007).
  • Khor CC, Chapman SJ, Vannberg FO et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 39(4), 523–528 (2007).
  • Mockenhaupt FP, Hamann L, von Gaertner C et al. Common polymorphisms of Toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 194(2), 184–188 (2006).
  • Mockenhaupt FP, Cramer JP, Hamann L et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc. Natl Acad. Sci. USA 103(1), 177–182 (2006).
  • Sam-Agudu NA, Greene JA, Opoka RO et al. TLR9 polymorphisms are associated with altered IFN-γ levels in children with cerebral malaria. Am. J. Trop. Med. Hyg. 82(4), 548–555 (2010).
  • Omer FM, Riley EM. Transforming growth factor β production is inversely correlated with severity of murine malaria infection. J. Exp. Med. 188(1), 39–48 (1998).
  • Li C, Corraliza I, Langhorne J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67(9), 4435–4442 (1999).
  • Tsutsui N, Kamiyama T. Transforming growth factor β-induced failure of resistance to infection with blood-stage Plasmodium chabaudi in mice. Infect. Immun. 67(5), 2306–2311 (1999).
  • Berretta F, St-Pierre J, Piccirillo CA, Stevenson MM. IL-2 contributes to maintaining a balance between CD4+FoxP3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection. J. Immunol. 186(8), 4862–4871 (2011).
  • Walther M, Tongren JE, Andrews L et al. Upregulation of TGF-β, FoxP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23(3), 287–296 (2005).
  • Finney OC, Nwakanma D, Conway DJ, Walther M, Riley EM. Homeostatic regulation of T effector to Treg ratios in an area of seasonal malaria transmission. Eur. J. Immunol. 39(5), 1288–1300 (2009).
  • Le Hesran JY, Cot M, Personne P et al. Maternal placental infection with Plasmodium falciparum and malaria morbidity during the first 2 years of life. Am. J. Epidemiol. 146(10), 826–831 (1997).
  • Schwarz NG, Adegnika AA, Breitling LP et al. Placental malaria increases malaria risk in the first 30 months of life. Clin. Infect. Dis. 47(8), 1017–1025 (2008).
  • Mutabingwa TK, Bolla MC, Li JL et al. Maternal malaria and gravidity interact to modify infant susceptibility to malaria. PLoS Med. 2(12), e407 (2005).
  • Brustoski K, Moller U, Kramer M et al. Reduced cord blood immune effector-cell responsiveness mediated by CD4+ cells induced in utero as a consequence of placental Plasmodium falciparum infection. J. Infect. Dis. 193(1), 146–154 (2006).
  • Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. J. Immunol. 186(5), 2780–2791 (2011).
  • Scholzen A, Mittag D, Rogerson SJ, Cooke BM, Plebanski M. Plasmodium falciparum-mediated induction of human CD25FoxP3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFβ. PLoS Pathog. 5(8), e1000543 (2009).
  • Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J. Immunol. 180(9), 5771–5777 (2008).
  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).
  • Blackburn SD, Wherry EJ. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 15(4), 143–146 (2007).
  • Wilson NO, Bythwood T, Solomon W et al. Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women. Infect. Dis. Obstet. Gynecol. 2010, 317430 (2010).
  • Wipasa J, Okell L, Sakkhachornphop S et al. Short-lived IFN-γ effector responses, but long-lived IL-10 memory responses, to malaria in an area of low malaria endemicity. PLoS Pathog. 7(2), e1001281 (2011).
  • Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis. 203(10), 1454–1463 (2011).
  • Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho LJ. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J. Neuroinflammation 8, 66 (2011).
  • Serghides L, Kim H, Lu Z et al. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS ONE 6(11), e27714 (2011).
  • Yeo TW, Lampah DA, Gitawati R et al. Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc. Natl Acad. Sci. USA 105(44), 17097–17102 (2008).
  • Nacher M. Interactions between worm infections and malaria. Clin. Rev. Allergy Immunol. 26(2), 85–92 (2004).
  • Acharya M, Borland G, Edkins AL et al. CD23/FceRII: molecular multi-tasking. Clin. Exp. Immunol. 162(1), 12–23 (2010).
  • Nacher M, Singhasivanon P, Traore B et al. Helminth infections are associated with protection from cerebral malaria and increased nitrogen derivatives concentrations in Thailand. Am. J. Trop. Med. Hyg. 66(3), 304–309 (2002).
  • Taylor RR, Allen SJ, Greenwood BM, Riley EM. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am. J. Trop. Med. Hyg. 58(4), 406–413 (1998).
  • Roussilhon C, Oeuvray C, Müller-Graf C et al. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med. 4(11), e320 (2007).
  • Olesen CH, Brahimi K, Vandahl B et al. Distinct patterns of blood-stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections. Malar. J. 9, 296 (2010).
  • Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites–masters of regulation. Immunol. Rev. 201, 89–116 (2004).
  • Nacher M. Malaria vaccine trials in a wormy world. Trends Parasitol. 17(12), 563–565 (2001).
  • Sabin EA, Araujo MI, Carvalho EM, Pearce EJ. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J. Infect. Dis. 173(1), 269–272 (1996).
  • Cooper PJ, Chico M, Sandoval C et al. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin b subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect. Immun. 69(3), 1574–1580 (2001).
  • Nacher M. Interactions between worms and malaria: good worms or bad worms? Malar. J. 10, 259 (2011).
  • Adegnika AA, Ramharter M, Agnandji ST et al. Epidemiology of parasitic co-infections during pregnancy in Lambaréné, Gabon. Trop. Med. Int. Health 15(10), 1204–1209 (2010).
  • Boel M, Carrara VI, Rijken M et al. Complex Interactions between soil-transmitted helminths and malaria in pregnant women on the Thai–Burmese border. PLoS Negl. Trop. Dis. 4(11), e887 (2010).
  • Shapiro AE, Tukahebwa EM, Kasten J et al. Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. Trans. R. Soc. Trop. Med. Hyg. 99(1), 18–24 (2005).
  • Brutus L, Watier L, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am. J. Trop. Med. Hyg. 77(6), 1091–1095 (2007).
  • Brutus L, Watier L, Briand V, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am. J. Trop. Med. Hyg. 75(2), 194–198 (2006).
  • Melo GC, Reyes-Lecca RC, Vitor-Silva S et al. Concurrent helminthic infection protects schoolchildren with Plasmodium vivax from anemia. PLoS ONE 5(6), e11206 (2010).
  • Nacher M, Singhasivanon P, Silachamroon U et al. Helminth infections are associated with protection from malaria-related acute renal failure and jaundice in Thailand. Am. J. Trop. Med. Hyg. 65(6), 834–836 (2001).
  • Das BS. Renal failure in malaria. J. Vector Borne Dis. 45(2), 83–97 (2008).
  • Le Hesran JY, Akiana J, Ndiaye el HM, Dia M, Senghor P, Konate L. Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans. R. Soc. Trop. Med. Hyg. 98(7), 397–399 (2004).
  • Degarege A, Animut A, Legesse M, Erko B. Malaria severity status in patients with soil-transmitted helminth infections. Acta Trop. 112(1), 8–11 (2009).
  • Pullan RL, Kabatereine NB, Bukirwa H, Staedke SG, Brooker S. Heterogeneities and consequences of Plasmodium species and hookworm coinfection: a population based study in Uganda. J. Infect. Dis. 203(3), 406–417 (2011).
  • Midzi N, Sangweme D, Zinyowera S et al. The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 102(10), 1039–1045 (2008).
  • Hillier SD, Booth M, Muhangi L et al. Plasmodium falciparum and helminth coinfection in a semi urban population of pregnant women in Uganda. J. Infect. Dis. 198(6), 920–927 (2008).
  • Nacher M. Worms and malaria: blind men feeling the elephant? Parasitology 135(7), 861–868 (2008).
  • Yatich NJ, Yi J, Agbenyega T et al. Malaria and intestinal helminth co-infection among pregnant women in Ghana: prevalence and risk factors. Am. J. Trop. Med. Hyg. 80(6), 896–901 (2009).
  • Thigpen MC, Filler SJ, Kazembe PN et al. Associations between peripheral Plasmodium falciparum malaria parasitemia, human immunodeficiency virus, and concurrent helminthic infection among pregnant women in Malawi. Am. J. Trop. Med. Hyg. 84(3), 379–385 (2011).
  • Nacher M, Singhasivanon P, Yimsamran S et al. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J. Parasitol. 88(1), 55–58 (2002).
  • Bejon P, Mwangi TW, Lowe B, Peshu N, Hill AV, Marsh K. Helminth infection and eosinophilia and the risk of Plasmodium falciparum malaria in 1- to 6-year-old children in a malaria endemic area. PLoS Negl. Trop. Dis. 2(1), e164 (2008).
  • Druilhe P, Tall A, Sokhna C. Worms can worsen malaria: towards a new means to roll back malaria? Trends Parasitol. 21(8), 359–362 (2005).
  • Hartgers FC, Obeng BB, Kruize YC et al. Responses to malarial antigens are altered in helminth-infected children. J. Infect. Dis. 199(10), 1528–1535 (2009).
  • Nacher M, Gay F, Singhasivanon P et al. Ascaris lumbricoides infection is associated with protection from cerebral malaria. Parasite Immunol. 22(3), 107–113 (2000).
  • Sokhna C, Le Hesran JY, Mbaye PA et al. Increase of malaria attacks among children presenting concomitant infection by Schistosoma mansoni in Senegal. Malar. J. 3, 43 (2004).
  • Sangweme D, Shiff C, Kumar N. Plasmodium yoelii: adverse outcome of non-lethal P. yoelii malaria during co-infection with Schistosoma mansoni in BALB/c mouse model. Exp. Parasitol. 122(3), 254–259 (2009).
  • Waknine-Grinberg JH, Gold D, Ohayon A et al. Schistosoma mansoni infection reduces the incidence of murine cerebral malaria. Malar. J. 9, 5 (2010).
  • Briand V, Watier L, LE Hesran JY, Garcia A, Cot M. Coinfection with Plasmodium falciparum and Schistosoma haematobium: protective effect of schistosomiasis on malaria in senegalese children? Am. J. Trop. Med. Hyg. 72(6), 702–707 (2005).
  • Lyke KE, Dicko A, Dabo A et al. Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am. J. Trop. Med. Hyg. 73(6), 1124–1130 (2005).
  • Lyke KE, Dabo A, Sangare L et al. Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect. Immun. 74(10), 5718–5724 (2006).
  • Lyke KE, Dabo A, Arama C et al. Reduced T regulatory cell response during acute Plasmodium falciparum infection in malian children co-infected with Schistosoma haematobium. PLoS ONE 7(2), e31647 (2012).
  • King CL, Kumaraswami V, Poindexter RW et al. Immunologic tolerance in lymphatic filariasis. Diminished parasite-specific T and B lymphocyte precursor frequency in the microfilaremic state. J. Clin. Invest. 89(5), 1403–1410 (1992).
  • Mahanty S, Ravichandran M, Raman U, Jayaraman K, Kumaraswami V, Nutman TB. Regulation of parasite antigen-driven immune responses by interleukin-10 (IL-10) and IL-12 in lymphatic filariasis. Infect. Immun. 65(5), 1742–1747 (1997).
  • van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 212(6), 475–490 (2007).
  • Melendez AJ, Harnett MM, Pushparaj PN et al. Inhibition of Fc epsilon RI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat. Med. 13(11), 1375–1381 (2007).
  • Metenou S, Dembélé B, Konate S et al. Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. J. Immunol. 183(2), 916–924 (2009).
  • Metenou S, Dembele B, Konate S et al. Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. J. Immunol. 186(8), 4725–4733 (2011).
  • Specht S, Ruiz DF, Dubben B, Deininger S, Hoerauf A. Filaria-induced IL-10 suppresses murine cerebral malaria. Microbes Infect. 12(8–9), 635–642 (2010).
  • Metenou S, Kovacs M, Dembele B, Coulibaly YI, Klion AD, Nutman TB. Interferon regulatory factor modulation underlies the bystander suppression of malaria antigen-driven IL-12 and IFN-γ in filaria-malaria co-infection. Eur. J. Immunol. 42(3), 641–650 (2012).
  • van der Kleij D, Latz E, Brouwers JF et al. A novel host–parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277(50), 48122–48129 (2002).
  • Aksoy E, Zouain CS, Vanhoutte F et al. Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J. Biol. Chem. 280(1), 277–283 (2005).
  • Whitworth J, Morgan D, Quigley M et al. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet 356(9235), 1051–1056 (2000).
  • Patnaik P, Jere CS, Miller WC et al. Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. J. Infect. Dis. 192(6), 984–991 (2005).
  • Chalwe V, Van geertruyden JP, Mukwamataba D et al. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerging Infect. Dis. 15(5), 749; quiz 858 (2009).
  • Laufer MK, van Oosterhout JJ, Thesing PC et al. Malaria treatment efficacy among people living with HIV: the role of host and parasite factors. Am. J. Trop. Med. Hyg. 77(4), 627–632 (2007).
  • Laufer MK, van Oosterhout JJ, Thesing PC et al. Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi. J. Infect. Dis. 193(6), 872–878 (2006).
  • Imani PD, Musoke P, Byarugaba J, Tumwine JK. Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case–control study. BMC Pediatr. 11, 5 (2011).
  • Klein SA, Dobmeyer JM, Dobmeyer TS et al. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. AIDS 11(9), 1111–1118 (1997).
  • Brockman MA, Kwon DS, Tighe DP et al. IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood 114(2), 346–356 (2009).
  • Kfutwah A, Mary JY, Lemen B et al.; ANRS 1267 study team. Plasmodium falciparum infection significantly impairs placental cytokine profile in HIV infected Cameroonian women. PLoS ONE 4(12), e8114 (2009).
  • Andrade BB, Santos CJ, Camargo LM et al. Hepatitis B infection is associated with asymptomatic malaria in the Brazilian Amazon. PLoS ONE 6(5), e19841 (2011).
  • Braga WS, Souza RA, Silva EB, Fonseca JC, Tosta CE. [Coinfection between hepatitis B virus and malaria: clinical, serologic and immunologic aspects]. Rev. Soc. Bras. Med. Trop. 39(1), 27–31 (2006).
  • Barcus MJ, Hien TT, White NJ et al. Short report: hepatitis B infection and severe Plasmodium falciparum malaria in Vietnamese adults. Am. J. Trop. Med. Hyg. 66(2), 140–142 (2002).
  • Thursz MR, Kwiatkowski D, Torok ME et al. Association of hepatitis B surface antigen carriage with severe malaria in Gambian children. Nat. Med. 1(4), 374–375 (1995).
  • Njie R, Bell AI, Jia H et al. The effects of acute malaria on Epstein–Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J. Infect. Dis. 199(1), 31–38 (2009).
  • Piriou E, Kimmel R, Chelimo K et al. Serological evidence for long-term Epstein–Barr virus reactivation in children living in a holoendemic malaria region of Kenya. J. Med. Virol. 81(6), 1088–1093 (2009).
  • Snider CJ, Cole SR, Chelimo K et al. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein–Barr virus lytic but not latent antigens. PLoS ONE 7(3), e31753 (2012).
  • van der Sande MA, Kaye S, Miles DJ et al. Risk factors for and clinical outcome of congenital cytomegalovirus infection in a peri-urban West-African birth cohort. PLoS ONE 2(6), e492 (2007).
  • Higgins SJ, Kain KC, Liles WC. Immunopathogenesis of falciparum malaria: implications for adjunctive therapy in the management of severe and cerebral malaria. Expert Rev. Anti. Infect. Ther. 9(9), 803–819 (2011).
  • John CC, Kutamba E, Mugarura K, Opoka RO. Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev. Anti. Infect. Ther. 8(9), 997–1008 (2010).
  • John CC, Bangirana P, Byarugaba J et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 122(1), e92–e99 (2008).
  • White NJ, Turner GD, Medana IM, Dondorp AM, Day NP. The murine cerebral malaria phenomenon. Trends Parasitol. 26(1), 11–15 (2010).
  • Kane CM, Cervi L, Sun J et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173(12), 7454–7461 (2004).
  • Venugopal PG, Nutman TB, Semnani RT. Activation and regulation of Toll-like receptors (TLRs) by helminth parasites. Immunol. Res. 43(1–3), 252–263 (2009).
  • Conroy AL, Phiri H, Hawkes M et al. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case–control study. PLoS ONE 5(12), e15291 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.