271
Views
24
CrossRef citations to date
0
Altmetric
Review

Mycothiol: a target for potentiation of rifampin and other antibiotics against Mycobacterium tuberculosis

Pages 49-67 | Published online: 10 Jan 2014

References

  • WHO. Global tuberculosis control. WHO, Geneva, Switzerland (2011).
  • Centers for Disease Control and Prevention. Treatment of tuberculosis, American Thoracic Society, CDC, and infectious diseases society of America. Morb. Mortal. Wkly Rep. 52(RR-11), 1–77 (2003).
  • CDC. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs. Morb. Mortal. Wkly Rep. 55(11), 301–305 (2006).
  • Dube D, Agrawal GP, Vyas SP. Tuberculosis: from molecular pathogenesis to effective drug carrier design. Drug Discov. Today 17(13–14), 760–773 (2012).
  • Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol. Rev. 36(2), 463–485 (2012).
  • Takiff H, Guerrero E. Current prospects for the fluoroquinolones as first-line tuberculosis therapy. Antimicrob. Agents Chemother. 55(12), 5421–5429 (2011).
  • Almeida Da Silva Pe, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chem. 66(7), 1417–1430 (2011).
  • Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 57(10), 1451–1470 (2005).
  • Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 53(8), 3181–3189 (2009).
  • Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta 1780(11), 1236–1248 (2008).
  • Helmann JD. Bacillithiol, a new player in bacterial redox homeostasis. Antioxid. Redox Signal. 15(1), 123–133 (2011).
  • Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC, Av-Gay Y. Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob. Agents Chemother. 46(11), 3348–3355 (2002).
  • Sareen D, Newton GL, Fahey RC, Buchmeier NA. Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J. Bacteriol. 185(22), 6736–6740 (2003).
  • Newton GL, Unson MD, Anderberg SJ et al. Characterization of Mycobacterium smegmatis mutants defective in 1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside and mycothiol biosynthesis. Biochem. Biophys. Res. Commun. 255(2), 239–244 (1999).
  • Ung Kse, Av-Gay Y. Mycothiol-dependent mycobacterial response to oxidative stress. FEBS Lett. 580(11), 2712–2716 (2006).
  • Newton GL, Buchmeier N, Fahey RC. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 72(3), 471–494 (2008).
  • Jothivasan VK, Hamilton CJ. Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat. Prod. Rep. 25(6), 1091–1117 (2008).
  • Rawat M, Av-Gay Y. Mycothiol-dependent proteins in actinomycetes. FEMS Microbiol. Rev. 31(3), 278–292 (2007).
  • Fan F, Vetting MW, Frantom PA, Blanchard JS. Structures and mechanisms of the mycothiol biosynthetic enzymes. Curr. Opin. Chem. Biol. 13(4), 451–459 (2009).
  • Newton GL, Fahey RC. Mycothiol biochemistry. Arch. Microbiol. 178(6), 388–394 (2002).
  • Buchmeier Fahey RC. The MshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol. Lett. 264, 74–79 (2006).
  • Rawat M, Kovacevic S, Billman-Jacobe H, Av-Gay Y. Inactivation of mshB, a key gene in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Microbiology 149(Pt 5), 1341–1349 (2003).
  • Newton GL, Av-Gay Y, Fahey RC. N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J. Bacteriol. 182(24), 6958–6963 (2000).
  • Hayward D, Wiid I, van Helden P. Differential expression of mycothiol pathway genes: are they affected by antituberculosis drugs? IUBMB Life 56(3), 131–138 (2004).
  • Buchmeier NA, Newton GL, Fahey RC. A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J. Bacteriol. 188(17), 6245–6252 (2006).
  • Xu X, Vilchèze C, Av-Gay Y, Gómez-Velasco A, Jacobs WR Jr. Precise null deletion mutations of the mycothiol synthesis genes reveal their role in isoniazid and ethionamide resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 55(7), 3133–3139 (2011).
  • Vilchèze C, Av-Gay Y, Attarian R et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol. 69(5), 1316–1329 (2008).
  • Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv. Microb. Physiol. 60, 263–324 (2012).
  • Park JH, Roe JH. Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sR in Streptomyces coelicolor. Mol. Microbiol. 68(4), 861–870 (2008).
  • Patel MP, Blanchard JS. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects. Biochemistry 40(17), 5119–5126 (2001).
  • Patel MP, Blanchard JS. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase. Biochemistry 38(36), 11827–11833 (1999).
  • Argyrou A, Blanchard JS. Flavoprotein disulfide reductases: advances in chemistry and function. Prog. Nucleic Acid Res. Mol. Biol. 78, 89–142 (2004).
  • Van Laer K, Buts L, Foloppe N et al. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of mycobacteria. Mol. Microbiol. 86(4), 787–804 (2012).
  • Vilchèze C, Av-Gay Y, Barnes SW et al. Coresistance to isoniazid and ethionamide maps to mycothiol biosynthetic genes in Mycobacterium bovis. Antimicrob. Agents Chemother. 55(9), 4422–4423 (2011).
  • Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55(1), 355–360 (2011).
  • Ta P, Buchmeier N, Newton GL, Rawat M, Fahey RC. Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants. J. Bacteriol. 193(8), 1981–1990 (2011).
  • Newton GL, Ta P, Bzymek KP, Fahey RC. Biochemistry of the initial steps of mycothiol biosynthesis. J. Biol. Chem. 281(45), 33910–33920 (2006).
  • Bachhawat N, Mande SC. Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291(3), 531–536 (1999).
  • Movahedzadeh F, Smith DA, Norman RA et al. The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol. Microbiol. 51(4), 1003–1014 (2004).
  • Morita YS, Fukuda T, Sena CB, Yamaryo-Botte Y, McConville MJ, Kinoshita T. Inositol lipid metabolism in mycobacteria: biosynthesis and regulatory mechanisms. Biochim. Biophys. Acta 1810(6), 630–641 (2011).
  • Li Y, Chen Z, Li X et al. Inositol-1-phosphate synthetase mRNA as a new target for antisense inhibition of Mycobacterium tuberculosis. J. Biotechnol. 128(4), 726–734 (2007).
  • Geiger Jh, Jin X. The structure and mechanism of myo-inositol-1-phosphate synthase. In: Biology of Inositols and Phosphoinositides. Majumder AL, Biswas BB (Eds). Springer, PA, USA, 157–180 (2006).
  • Stieglitz KA, Yang H, Roberts MF, Stec B. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus. Biochemistry 44(1), 213–224 (2005).
  • Norman RA, McAlister MS, Murray-Rust J, Movahedzadeh F, Stoker NG, McDonald NQ. Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure 10(3), 393–402 (2002).
  • Newton GL, Koledin T, Gorovitz B, Rawat M, Fahey RC, Av-Gay Y. The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA). J. Bacteriol. 185(11), 3476–3479 (2003).
  • Rawat M, Johnson C, Cadiz V, Av-Gay Y. Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 363(1), 71–76 (2007).
  • Vetting MW, Frantom PA, Blanchard JS. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J. Biol. Chem. 283(23), 15834–15844 (2008).
  • Movahedzadeh F, Wheeler PR, Dinadayala P et al. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis. BMC Microbiol. 10, 50 (2010).
  • Buchmeier NA, Newton GL, Koledin T, Fahey RC. Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol. Microbiol. 47(6), 1723–1732 (2003).
  • McCarthy AA, Peterson NA, Knijff R, Baker EN. Crystal structure of MshB from Mycobacterium tuberculosis, a deacetylase involved in mycothiol biosynthesis. J. Mol. Biol. 335(4), 1131–1141 (2004).
  • Maynes JT, Garen C, Cherney MM et al. The crystal structure of 1-d-myo-inosityl 2-acetamido-2-deoxy-α-d-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold. J. Biol. Chem. 278(47), 47166–47170 (2003).
  • Newton GL, Ko M, Ta P, Av-Gay Y, Fahey RC. Purification and characterization of Mycobacterium tuberculosis 1-d-myo-inosityl-2-acetamido-2-deoxy-α-d-glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expr. Purif. 47(2), 542–550 (2006).
  • Huang X, Kocabas E, Hernick M. The activity and cofactor preferences of N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase (MshB) change depending on environmental conditions. J. Biol. Chem. 286(23), 20275–20282 (2011).
  • Huang X, Hernick M. Examination of mechanism of N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase (MshB) reveals unexpected role for dynamic tyrosine. J. Biol. Chem. 287(13), 10424–10434 (2012).
  • Nicholas GM, Eckman LL, Kovác P, Otero-Quintero S, Bewley CA. Synthesis of 1-d- and 1-l-myo-inosityl 2-N-acetamido-2-deoxy-α-d-glucopyranoside establishes substrate specificity of the Mycobacterium tuberculosis enzyme AcGI deacetylase. Bioorg. Med. Chem. 11(12), 2641–2647 (2003).
  • Steffek M, Newton GL, Av-Gay Y, Fahey RC. Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase. Biochemistry 42(41), 12067–12076 (2003).
  • Sareen D, Steffek M, Newton GL, Fahey RC. ATP-dependent l-cysteine:1-d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 41(22), 6885–6890 (2002).
  • Tremblay LW, Fan F, Vetting MW, Blanchard JS. The 1.6 A crystal structure of Mycobacterium smegmatis MshC: the penultimate enzyme in the mycothiol biosynthetic pathway. Biochemistry 47(50), 13326–13335 (2008).
  • Fan F, Luxenburger A, Painter GF, Blanchard JS. Steady-state and pre-steady-state kinetic analysis of Mycobacterium smegmatis cysteine ligase (MshC). Biochemistry 46(40), 11421–11429 (2007).
  • Williams L, Fan F, Blanchard JS, Raushel FM. Positional isotope exchange analysis of the Mycobacterium smegmatis cysteine ligase (MshC). Biochemistry 47(16), 4843–4850 (2008).
  • Fan F, Blanchard JS. Toward the catalytic mechanism of a cysteine ligase (MshC) from Mycobacterium smegmatis: an enzyme involved in the biosynthetic pathway of mycothiol. Biochemistry 48(30), 7150–7159 (2009).
  • Koledin T, Newton GL, Fahey RC. Identification of the mycothiol synthase gene (mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch. Microbiol. 178(5), 331–337 (2002).
  • Newton GL, Ta P, Fahey RC. A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status. J. Bacteriol. 187(21), 7309–7316 (2005).
  • Vetting MW, Roderick SL, Yu M, Blanchard JS. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci. 12(9), 1954–1959 (2003).
  • Vetting MW, Yu M, Rendle PM, Blanchard JS. The substrate-induced conformational change of Mycobacterium tuberculosis mycothiol synthase. J. Biol. Chem. 281(5), 2795–2802 (2006).
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48(1), 77–84 (2003).
  • McAdam RA, Quan S, Smith DA et al. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148(Pt 10), 2975–2986 (2002).
  • Mahapatra A, Mativandlela SP, Binneman B et al. Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase. Bioorg. Med. Chem. 15(24), 7638–7646 (2007).
  • Stewart MJG, Jothivasan VK, Rowan AS, Wagg J, Hamilton CJ. Mycothiol disulfide reductase: solid phase synthesis and evaluation of alternative substrate analogues. Org. Biomol. Chem. 6(2), 385–390 (2008).
  • Newton GL, Leung SS, Wakabayashi JI, Rawat M, Fahey RC. The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases. Biochemistry 50(49), 10751–10760 (2011).
  • Cooper DR, Grelewska K, Kim CY, Joachimiak A, Derewenda ZS. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66(Pt 3), 219–224 (2010).
  • Newton GL, Av-Gay Y, Fahey RC. A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39(35), 10739–10746 (2000).
  • Nicholas GM, Newton GL, Fahey RC, Bewley CA. Novel bromotyrosine alkaloids: inhibitors of mycothiol S-conjugate amidase. Org. Lett. 3(10), 1543–1545 (2001).
  • Nicholas GM, Eckman LL, Newton GL, Fahey RC, Ray S, Bewley CA. Inhibition and kinetics of Mycobacterium tuberculosis and Mycobacterium smegmatis mycothiol-S-conjugate amidase by natural product inhibitors. Bioorg. Med. Chem. 11(4), 601–608 (2003).
  • Rawat M, Uppal M, Newton G, Steffek M, Fahey RC, Av-Gay Y. Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J. Bacteriol. 186(18), 6050–6058 (2004).
  • Frantom PA, Coward JK, Blanchard JS. UDP-(5F)-GlcNAc acts as a slow-binding inhibitor of MshA, a retaining glycosyltransferase. J. Am. Chem. Soc. 132(19), 6626–6627 (2010).
  • Upton H, Newton GL, Gushiken M et al. Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis. FEBS Lett. 586(7), 1004–1008 (2012).
  • Metaferia BB, Fetterolf BJ, Shazad-Ul-Hussan S et al. Synthesis of natural product-inspired inhibitors of Mycobacterium tuberculosis mycothiol-associated enzymes: the first inhibitors of GlcNAc-Ins deacetylase. J. Med. Chem. 50(25), 6326–6336 (2007).
  • Gammon DW, Steenkamp DJ, Mavumengwana V et al. Conjugates of plumbagin and phenyl-2-amino-1-thioglucoside inhibit MshB, a deacetylase involved in the biosynthesis of mycothiol. Bioorg. Med. Chem. 18(7), 2501–2514 (2010).
  • Huang X, Hernick M. A fluorescence-based assay for measuring N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase activity. Anal. Biochem. 414(2), 278–281 (2011).
  • Newton GL, Ta P, Sareen D, Fahey RC. A coupled spectrophotometric assay for l-cysteine:1-d-myo-inosityl 2-amino-2-deoxy-α-d-glucopyranoside ligase and its application for inhibitor screening. Anal. Biochem. 353(2), 167–173 (2006).
  • Gutierrez-Lugo MT, Baker H, Shiloach J, Boshoff H, Bewley CA. Dequalinium, a new inhibitor of Mycobacterium tuberculosis mycothiol ligase identified by high-throughput screening. J. Biomol. Screen. 14(6), 643–652 (2009).
  • Gutierrez-Lugo MT, Bewley CA. Susceptibility and mode of binding of the Mycobacterium tuberculosis cysteinyl transferase mycothiol ligase to tRNA synthetase inhibitors. Bioorg. Med. Chem. Lett. 21(8), 2480–2483 (2011).
  • Newton GL, Buchmeier N, La Clair JJ, Fahey RC. Evaluation of NTF1836 as an inhibitor of the mycothiol biosynthetic enzyme MshC in growing and non-replicating Mycobacterium tuberculosis. Bioorg. Med. Chem. 19(13), 3956–3964 (2011).
  • Hamilton CJ, Finlay RM, Stewart MJ, Bonner A. Mycothiol disulfide reductase: a continuous assay for slow time-dependent inhibitors. Anal. Biochem. 388(1), 91–96 (2009).
  • Sau A, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 500(2), 116–122 (2010).
  • Nicholas GM, Eckman LL, Ray S et al. Bromotyrosine-derived natural and synthetic products as inhibitors of mycothiol-S-conjugate amidase. Bioorg. Med. Chem. Lett. 12(17), 2487–2490 (2002).
  • Fetterolf B, Bewley CA. Synthesis of a bromotyrosine-derived natural product inhibitor of mycothiol-S-conjugate amidase. Bioorg. Med. Chem. Lett. 14(14), 3785–3788 (2004).
  • Kottakota SK, Evangelopoulos D, Alnimr A et al. Synthesis and biological evaluation of purpurealidin E-derived marine sponge metabolites: aplysamine-2, aplyzanzine A, and suberedamines A and B. J. Nat. Prod. 75(6), 1090–1101 (2012).
  • Metaferia BB, Ray S, Smith JA, Bewley CA. Design and synthesis of substrate-mimic inhibitors of mycothiol-S-conjugate amidase from Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 17(2), 444–447 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.