273
Views
29
CrossRef citations to date
0
Altmetric
Review

Surfactant proteins A and D in pulmonary diseases of preterm infants

, &
Pages 573-584 | Published online: 10 Jan 2014

References

  • Strunk T, Currie A, Richmond P, Simmer K, Burgner D. Innate immunity in human newborn infants: prematurity means more than immaturity. J. Matern. Fetal. Neonatal. Med. 24(1), 25–31 (2011).
  • Halliday HL. Surfactants: past, present and future. J. Perinatol. 28(Suppl. 1), S47–S56 (2008).
  • Sweet DG, Carnielli V, Greisen G et al.; European Association of Perinatal Medicine. European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants – 2010 update. Neonatology 97(4), 402–417 (2010).
  • Speer CP. Neonatal respiratory distress syndrome: an inflammatory disease? Neonatology 99(4), 316–319 (2011).
  • Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 95(4), 353–361 (2009).
  • Wright JR. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 5(1), 58–68 (2005).
  • Froh D, Gonzales LW, Ballard PL. Secretion of surfactant protein A and phosphatidylcholine from type II cells of human fetal lung. Am. J. Respir. Cell Mol. Biol. 8(5), 556–561 (1993).
  • Ikegami M, Lewis JF, Tabor B, Rider ED, Jobe AH. Surfactant protein A metabolism in preterm ventilated lambs. Am. J. Physiol. 262(6 Pt 1), L765–L772 (1992).
  • Nogee LM, Garnier G, Dietz HC et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J. Clin. Invest. 93(4), 1860–1863 (1994).
  • Wambach JA, Yang P, Wegner DJ et al. Surfactant protein-C promoter variants associated with neonatal respiratory distress syndrome reduce transcription. Pediatr. Res. 68(3), 216–220 (2010).
  • Nogee LM, Dunbar AE 3rd, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N. Engl. J. Med. 344(8), 573–579 (2001).
  • Guillot L, Epaud R, Thouvenin G et al. New surfactant protein C gene mutations associated with diffuse lung disease. J. Med. Genet. 46(7), 490–494 (2009).
  • Sorensen GL, Husby S, Holmskov U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 212(4–5), 381–416 (2007).
  • Murakami S, Iwaki D, Mitsuzawa H et al. Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J. Biol. Chem. 277(9), 6830–6837 (2002).
  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168(12), 5989–5992 (2002).
  • Gardai SJ, Xiao YQ, Dickinson M et al. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115(1), 13–23 (2003).
  • Watford WT, Wright JR, Hester CG, Jiang H, Frank MM. Surfactant protein A regulates complement activation. J. Immunol. 167(11), 6593–6600 (2001).
  • Ohya M, Nishitani C, Sano H et al. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 45(28), 8657–8664 (2006).
  • Nepomuceno RR, Henschen-Edman AH, Burgess WH, Tenner AJ. cDNA cloning and primary structure analysis of C1qR(P), the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6(2), 119–129 (1997).
  • Holmskov U, Lawson P, Teisner B et al. Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J. Biol. Chem. 272(21), 13743–13749 (1997).
  • Chroneos ZC, Abdolrasulnia R, Whitsett JA, Rice WR, Shepherd VL. Purification of a cell-surface receptor for surfactant protein A. J. Biol. Chem. 271(27), 16375–16383 (1996).
  • Korfhagen TR, Bruno MD, Ross GF et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc. Natl Acad. Sci. USA 93(18), 9594–9599 (1996).
  • Ikegami M, Korfhagen TR, Whitsett JA et al. Characteristics of surfactant from SP-A-deficient mice. Am. J. Physiol. 275(2 Pt 1), L247–L254 (1998).
  • Hallman M, Merritt TA, Akino T, Bry K. Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid. Correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants. Am. Rev. Respir. Dis. 144(6), 1376–1384 (1991).
  • Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T. Surfactant metabolism in SP-D gene-targeted mice. Am. J. Physiol. Lung Cell Mol. Physiol. 279(3), L468–L476 (2000).
  • Korfhagen TR, Sheftelyevich V, Burhans MS et al. Surfactant protein-D regulates surfactant phospholipid homeostasis in vivo. J. Biol. Chem. 273(43), 28438–28443 (1998).
  • Ikegami M, Na CL, Korfhagen TR, Whitsett JA. Surfactant protein D influences surfactant ultrastructure and uptake by alveolar type II cells. Am. J. Physiol. Lung Cell Mol. Physiol. 288(3), L552–L561 (2005).
  • Ikegami M. Surfactant catabolism. Respirology 11(Suppl.), S24–S27 (2006).
  • Botas C, Poulain F, Akiyama J et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl Acad. Sci. USA 95(20), 11869–11874 (1998).
  • Wert SE, Yoshida M, LeVine AM et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl Acad. Sci. USA 97(11), 5972–5977 (2000).
  • Clark HW. Untapped therapeutic potential of surfactant proteins: is there a case for recombinant SP-D supplementation in neonatal lung disease? Neonatology 97(4), 380–387 (2010).
  • Kalina M, Blau H, Riklis S, Kravtsov V. Interaction of surfactant protein A with bacterial lipopolysaccharide may affect some biological functions. Am. J. Physiol. 268(1 Pt 1), L144–L151 (1995).
  • Kuan SF, Rust K, Crouch E. Interactions of surfactant protein D with bacterial lipopolysaccharides. Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J. Clin. Invest. 90(1), 97–106 (1992).
  • Tino MJ, Wright JR. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am. J. Physiol. 270(4 Pt 1), L677–L688 (1996).
  • Van De Wetering JK, Van Eijk M, Van Golde LM, Hartung T, Van Strijp JA, Batenburg JJ. Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of Gram-positive bacteria. J. Infect. Dis. 184(9), 1143–1151 (2001).
  • Tenner AJ, Robinson SL, Borchelt J, Wright JR. Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J. Biol. Chem. 264(23), 13923–13928 (1989).
  • Wofford JA, Wright JR. Surfactant protein A regulates IgG-mediated phagocytosis in inflammatory neutrophils. Am. J. Physiol. Lung Cell Mol. Physiol. 293(6), L1437–L1443 (2007).
  • Kuronuma K, Sano H, Kato K et al. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J. Biol. Chem. 279(20), 21421–21430 (2004).
  • Beharka AA, Gaynor CD, Kang BK, Voelker DR, McCormack FX, Schlesinger LS. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J. Immunol. 169(7), 3565–3573 (2002).
  • Awasthi S, Madhusoodhanan R, Wolf R. Surfactant protein-A and toll-like receptor-4 modulate immune functions of preterm baboon lung dendritic cell precursor cells. Cell. Immunol. 268(2), 87–96 (2011).
  • Fleer A, Krediet TG. Innate immunity: Toll-like receptors and some more. A brief history, basic organization and relevance for the human newborn. Neonatology 92(3), 145–157 (2007).
  • Wright JR, Youmans DC. Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am. J. Physiol. 264(4 Pt 1), L338–L344 (1993).
  • Kresch MJ, Block M, Karim MR et al. Surfactant protein A stimulates release of neutrophil chemotactic factors by alveolar type II pneumocytes. Lung 188(6), 491–497 (2010).
  • Brinker KG, Martin E, Borron P et al. Surfactant protein D enhances bacterial antigen presentation by bone marrow-derived dendritic cells. Am. J. Physiol. Lung Cell Mol. Physiol. 281(6), L1453–L1463 (2001).
  • Brinker KG, Garner H, Wright JR. Surfactant protein A modulates the differentiation of murine bone marrow-derived dendritic cells. Am. J. Physiol. Lung Cell Mol. Physiol. 284(1), L232–L241 (2003).
  • Ledford JG, Lo B, Kislan MM et al. Surfactant protein-A inhibits mycoplasma-induced dendritic cell maturation through regulation of HMGB-1 cytokine activity. J. Immunol. 185(7), 3884–3894 (2010).
  • Weber H, Heilmann P, Meyer B, Maier KL. Effect of canine surfactant protein (SP-A) on the respiratory burst of phagocytic cells. FEBS Lett. 270(1–2), 90–94 (1990).
  • Pasula R, Wright JR, Kachel DL, Martin WJ 2nd. Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. J. Clin. Invest. 103(4), 483–490 (1999).
  • Atochina EN, Beers MF, Hawgood S et al. Surfactant protein-D, a mediator of innate lung immunity, alters the products of nitric oxide metabolism. Am. J. Respir. Cell Mol. Biol. 30(3), 271–279 (2004).
  • Guo CJ, Atochina-Vasserman EN, Abramova E et al. S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol. 6(11), e266 (2008).
  • Schagat TL, Wofford JA, Wright JR. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J. Immunol. 166(4), 2727–2733 (2001).
  • Clark H, Palaniyar N, Strong P, Edmondson J, Hawgood S, Reid KB. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J. Immunol. 169(6), 2892–2899 (2002).
  • Palaniyar N, Clark H, Nadesalingam J, Shih MJ, Hawgood S, Reid KB. Innate immune collectin surfactant protein D enhances the clearance of DNA by macrophages and minimizes anti-DNA antibody generation. J. Immunol. 174(11), 7352–7358 (2005).
  • Clark H, Palaniyar N, Hawgood S, Reid KB. A recombinant fragment of human surfactant protein D reduces alveolar macrophage apoptosis and pro-inflammatory cytokines in mice developing pulmonary emphysema. Ann. NY Acad. Sci. 1010, 113–116 (2003).
  • Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J. Immunol. 187(4), 1856–1865 (2011).
  • Wu H, Kuzmenko A, Wan S et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest. 111(10), 1589–1602 (2003).
  • Borron P, McCormack FX, Elhalwagi BM et al. Surfactant protein A inhibits T cell proliferation via its collagen-like tail and a 210-kDa receptor. Am. J. Physiol. 275(4 Pt 1), L679–L686 (1998).
  • Borron PJ, Crouch EC, Lewis JF, Wright JR, Possmayer F, Fraher LJ. Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J. Immunol. 161(9), 4599–4603 (1998).
  • Borron PJ, Mostaghel EA, Doyle C, Walsh ES, McHeyzer-Williams MG, Wright JR. Pulmonary surfactant proteins A and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J. Immunol. 169(10), 5844–5850 (2002).
  • Mukherjee S, Giamberardino C, Thomas J et al. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation. J. Immunol. 188(3), 957–967 (2012).
  • Pastva AM, Mukherjee S, Giamberardino C et al. Lung effector memory and activated CD4+ T cells display enhanced proliferation in surfactant protein A-deficient mice during allergen-mediated inflammation. J. Immunol. 186(5), 2842–2849 (2011).
  • Brandt EB, Mingler MK, Stevenson MD et al. Surfactant protein D alters allergic lung responses in mice and human subjects. J. Allergy Clin. Immunol. 121(5), 1140.e2–1147.e2 (2008).
  • Lin KW, Jen KY, Suarez CJ, Crouch EC, Perkins DL, Finn PW. Surfactant protein D-mediated decrease of allergen-induced inflammation is dependent upon CTLA4. J. Immunol. 184(11), 6343–6349 (2010).
  • Kunzmann S, Wright JR, Steinhilber W et al. TGF-beta1 in SP-A preparations influence immune suppressive properties of SP-A on human CD4+ T lymphocytes. Am. J. Physiol. Lung Cell Mol. Physiol. 291(4), L747–L756 (2006).
  • Willems CH, Kloosterboer N, Kunzmann S, Kramer BW, Zimmermann LJ, van Iwaarden JF. Dissociation of transforming growth factors β1 and β2 from surfactant protein A (SP-A) by deglycosylation or deoxycholate treatment. J. Immunol. Methods 375(1–2), 111–117 (2012).
  • Stoll BJ, Hansen N, Fanaroff AA et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347(4), 240–247 (2002).
  • Stoll BJ, Hansen NI, Sánchez PJ et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127(5), 817–826 (2011).
  • LeVine AM, Kurak KE, Wright JR et al. Surfactant protein-A binds group B streptococcus enhancing phagocytosis and clearance from lungs of surfactant protein-A-deficient mice. Am. J. Respir. Cell Mol. Biol. 20(2), 279–286 (1999).
  • LeVine AM, Whitsett JA, Gwozdz JA et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165(7), 3934–3940 (2000).
  • Kramer BW. Chorioamnionitis – new ideas from experimental models. Neonatology 99(4), 320–325 (2011).
  • Stamme C, Wright JR. Surfactant protein A enhances the binding and deacylation of E. coli LPS by alveolar macrophages. Am. J. Physiol. 276(3 Pt 1), L540–L547 (1999).
  • Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y. Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J. Immunol. 163(1), 387–395 (1999).
  • van Rozendaal BA, van de Lest CH, van Eijk M et al. Aerosolized endotoxin is immediately bound by pulmonary surfactant protein D in vivo. Biochim. Biophys. Acta 1454(3), 261–269 (1999).
  • Borron P, McIntosh JC, Korfhagen TR, Whitsett JA, Taylor J, Wright JR. Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 278(4), L840–L847 (2000).
  • Hartshorn KL. Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Front. Biosci. (Schol. Ed.) 2, 527–546 (2010).
  • LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J. Clin. Invest. 103(7), 1015–1021 (1999).
  • Hickling TP, Bright H, Wing K et al. A recombinant trimeric surfactant protein D carbohydrate recognition domain inhibits respiratory syncytial virus infection in vitro and in vivo. Eur. J. Immunol. 29(11), 3478–3484 (1999).
  • LeVine AM, Elliott J, Whitsett JA et al. Surfactant protein-D enhances phagocytosis and pulmonary clearance of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 31(2), 193–199 (2004).
  • LeVine AM, Whitsett JA, Hartshorn KL, Crouch EC, Korfhagen TR. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J. Immunol. 167(10), 5868–5873 (2001).
  • Manzoni P, Monstert M, Agriesti G, Priolo C, Galletto P, Farina D. Neonatal fungal infections: the state of the art. J. Chemother. 19(Suppl. 2), 42–45 (2007).
  • Brummer E, Stevens DA. Collectins and fungal pathogens: roles of surfactant proteins and mannose binding lectin in host resistance. Med. Mycol. 48(1), 16–28 (2010).
  • Clark H, Clark LS. The genetics of neonatal respiratory disease. Semin. Fetal Neonatal Med. 10(3), 271–282 (2005).
  • Stevens PA, Schadow B, Bartholain S, Segerer H, Obladen M. Surfactant protein A in the course of respiratory distress syndrome. Eur. J. Pediatr. 151(8), 596–600 (1992).
  • Eguchi H, Koyama N, Tanaka T, Kamiya K, Ogawa Y. Surfactant apoprotein A (SP-A) in tracheal aspirates of newborn infants with RDS. Acta Paediatr. Jpn. 33(5), 649–654 (1991).
  • Chida S, Phelps DS, Cordle C, Soll R, Floros J, Taeusch HW. Surfactant-associated proteins in tracheal aspirates of infants with respiratory distress syndrome after surfactant therapy. Am. Rev. Respir. Dis. 137(4), 943–947 (1988).
  • Bae YM, Bae CW, Oh MH, Lee SH, Woo KM, Jung KB. Effect of exogenous surfactant therapy on levels of pulmonary surfactant proteins A and D in preterm infants with respiratory distress syndrome. J. Perinat. Med. 37(5), 561–564 (2009).
  • Moya FR, Montes HF, Thomas VL, Mouzinho AM, Smith JF, Rosenfeld CR. Surfactant protein A and saturated phosphatidylcholine in respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 150(6 Pt 1), 1672–1677 (1994).
  • Beresford MW, Shaw NJ. Bronchoalveolar lavage surfactant protein A, B, and D concentrations in preterm infants ventilated for respiratory distress syndrome receiving natural and synthetic surfactants. Pediatr. Res. 53(4), 663–670 (2003).
  • Ikegami M, Ueda T, Purtell J, Woods E, Jobe A. Surfactant protein A labeling kinetics in newborn and adult rabbits. Am. J. Respir. Cell Mol. Biol. 10(4), 413–418 (1994).
  • Wright JR, Dobbs LG. Regulation of pulmonary surfactant secretion and clearance. Annu. Rev. Physiol. 53, 395–414 (1991).
  • Pavlovic J, Papagaroufalis C, Xanthou M et al. Genetic variants of surfactant proteins A, B, C, and D in bronchopulmonary dysplasia. Dis. Markers 22(5–6), 277–291 (2006).
  • Liu DY, Wu J, Zhang XY, Feng ZC. [Expression of IL-8, SP-A and TGF-beta1 in bronchoalveolar lavage fluid of neonates with bronchopulmonary dysplasia]. Zhongguo Dang Dai Er Ke Za Zhi 12(6), 444–446 (2010).
  • Coalson JJ, King RJ, Yang F et al. SP-A deficiency in primate model of bronchopulmonary dysplasia with infection. In situ mRNA and immunostains. Am. J. Respir. Crit. Care Med. 151(3 Pt 1), 854–866 (1995).
  • King RJ, Coalson JJ, deLemos RA, Gerstmann DR, Seidner SR. Surfactant protein-A deficiency in a primate model of bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 151(6), 1989–1997 (1995).
  • Li YH, Tullus K. Microbial infection and inflammation in the development of chronic lung disease of prematurity. Microbes Infect. 4(7), 723–732 (2002).
  • Awasthi S, Coalson JJ, Yoder BA, Crouch E, King RJ. Deficiencies in lung surfactant proteins A and D are associated with lung infection in very premature neonatal baboons. Am. J. Respir. Crit. Care Med. 163(2), 389–397 (2001).
  • Rova M, Haataja R, Marttila R, Ollikainen V, Tammela O, Hallman M. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia. Hum. Mol. Genet. 13(11), 1095–1104 (2004).
  • Merrill JD, Ballard RA, Cnaan A et al. Dysfunction of pulmonary surfactant in chronically ventilated premature infants. Pediatr. Res. 56(6), 918–926 (2004).
  • Guttentag SH, Phelps DS, Floros J. Surfactant protein regulation and diabetic pregnancy. Semin. Perinatol. 16(2), 122–129 (1992).
  • Guttentag SH, Phelps DS, Stenzel W, Warshaw JB, Floros J. Surfactant protein A expression is delayed in fetuses of streptozotocin-treated rats. Am. J. Physiol. 262(4 Pt 1), L489–L494 (1992).
  • Gortner L, Hilgendorff A, Bähner T, Ebsen M, Reiss I, Rudloff S. Hypoxia-induced intrauterine growth retardation: effects on pulmonary development and surfactant protein transcription. Biol. Neonate 88(2), 129–135 (2005).
  • Kari MA, Akino T, Hallman M. Prenatal dexamethasone and exogenous surfactant therapy: surface activity and surfactant components in airway specimens. Pediatr. Res. 38(5), 676–684 (1995).
  • Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 3, CD004454 (2006).
  • Hallman M, Peltoniemi O, Kari MA. Enhancing functional maturity before preterm birth. Neonatology 97(4), 373–378 (2010).
  • Franchimont D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. NY Acad. Sci. 1024, 124–137 (2004).
  • Murphy KE, Hannah ME, Willan AR et al.; MACS Collaborative Group. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. Lancet 372(9656), 2143–2151 (2008).
  • Schellhase DE, Shannon JM. Effects of maternal dexamethasone on expression of SP-A, SP-B, and SP-C in the fetal rat lung. Am. J. Respir. Cell Mol. Biol. 4(4), 304–312 (1991).
  • Mariencheck W, Crouch E. Modulation of surfactant protein D expression by glucocorticoids in fetal rat lung. Am. J. Respir. Cell Mol. Biol. 10(4), 419–429 (1994).
  • Wang JY, Yeh TF, Lin YC, Miyamura K, Holmskov U, Reid KB. Measurement of pulmonary status and surfactant protein levels during dexamethasone treatment of neonatal respiratory distress syndrome. Thorax 51(9), 907–913 (1996).
  • Ballard PL. Hormonal regulation of pulmonary surfactant. Endocr. Rev. 10(2), 165–181 (1989).
  • Ladenburger A, Seehase M, Kramer BW et al. Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 299(4), L578–L584 (2010).
  • Wirbelauer J, Schmidt B, Klingel K, Cao L, Lang F, Speer CP. Serum and glucocorticoid-inducible kinase in pulmonary tissue of preterm fetuses exposed to chorioamnionitis. Neonatology 93(4), 257–262 (2008).
  • Takahashi H, Sano H, Chiba H, Kuroki Y. Pulmonary surfactant proteins A and D: innate immune functions and biomarkers for lung diseases. Curr. Pharm. Des. 12(5), 589–598 (2006).
  • Hermans C, Bernard A. Lung epithelium-specific proteins: characteristics and potential applications as markers. Am. J. Respir. Crit. Care Med. 159(2), 646–678 (1999).
  • Cho K, Matsuda T, Okajima S et al. Prediction of respiratory distress syndrome by the level of pulmonary surfactant protein A in cord blood sera. Biol. Neonate 77(2), 83–87 (2000).
  • Kaneko K, Shimizu H, Arakawa H, Ogawa Y. Pulmonary surfactant protein A in sera for assessing neonatal lung maturation. Early Hum. Dev. 62(1), 11–21 (2001).
  • Dahl M, Holmskov U, Husby S, Juvonen PO. Surfactant protein D levels in umbilical cord blood and capillary blood of premature infants. The influence of perinatal factors. Pediatr. Res. 59(6), 806–810 (2006).
  • Stahlman MT, Gray ME, Hull WM, Whitsett JA. Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult tissues. J. Histochem. Cytochem. 50(5), 651–660 (2002).
  • Clark H, Reid K. The potential of recombinant surfactant protein D therapy to reduce inflammation in neonatal chronic lung disease, cystic fibrosis, and emphysema. Arch. Dis. Child. 88(11), 981–984 (2003).
  • Ikegami M, Carter K, Bishop K et al. Intratracheal recombinant surfactant protein D prevents endotoxin shock in the newborn preterm lamb. Am. J. Respir. Crit. Care Med. 173(12), 1342–1347 (2006).
  • Ikegami M, Scoville EA, Grant S et al. Surfactant protein-D and surfactant inhibit endotoxin-induced pulmonary inflammation. Chest 132(5), 1447–1454 (2007).
  • Strong P, Townsend P, Mackay R, Reid KB, Clark HW. A recombinant fragment of human SP-D reduces allergic responses in mice sensitized to house dust mite allergens. Clin. Exp. Immunol. 134(2), 181–187 (2003).
  • Sato A, Whitsett JA, Scheule RK, Ikegami M. Surfactant protein-d inhibits lung inflammation caused by ventilation in premature newborn lambs. Am. J. Respir. Crit. Care Med. 181(10), 1098–1105 (2010).
  • Sun B, Curstedt T, Lindgren G et al. Biophysical and physiological properties of a modified porcine surfactant enriched with surfactant protein A. Eur. Respir. J. 10(9), 1967–1974 (1997).
  • Cockshutt AM, Weitz J, Possmayer F. Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 29(36), 8424–8429 (1990).
  • Shepherd VL. Distinct roles for lung collectins in pulmonary host defense. Am. J. Respir. Cell Mol. Biol. 26(3), 257–260 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.