110
Views
7
CrossRef citations to date
0
Altmetric
Review

Treatment of candidiasis: insights from host genetics

, , &
Pages 947-956 | Published online: 10 Jan 2014

References

  • Gammelsrud KW, Sandven P, Høiby EA, Sandvik L, Brandtzaeg P, Gaustad P. Colonization by Candida in children with cancer, children with cystic fibrosis, and healthy controls. Clin. Microbiol. Infect. 17(12), 1875–1881 (2011).
  • Darwazeh AM, Hammad MM, Al-Jamaei AA. The relationship between oral hygiene and oral colonization with Candida species in healthy adult subjects. Int. J. Dent. Hyg. 8(2), 128–133 (2010).
  • Yang YL, Leaw SN, Wang AH, Chen HT, Cheng WT, Lo HJ. Characterization of yeasts colonizing in healthy individuals. Med. Mycol. 49(1), 103–106 (2011).
  • Tortorano AM, Peman J, Bernhardt H et al.; ECMM Working Group on Candidaemia. Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study. Eur. J. Clin. Microbiol. Infect. Dis. 23(4), 317–322 (2004).
  • Pappas PG, Rex JH, Lee J et al.; NIAID Mycoses Study Group. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin. Infect. Dis. 37(5), 634–643 (2003).
  • Viscoli C, Girmenia C, Marinus A et al. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC). Clin. Infect. Dis. 28(5), 1071–1079 (1999).
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39(3), 309–317 (2004).
  • Gudlaugsson O, Gillespie S, Lee K et al. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37(9), 1172–1177 (2003).
  • Alonso-Valle H, Acha O, García-Palomo JD, Fariñas-Alvarez C, Fernández-Mazarrasa C, Fariñas MC. Candidemia in a tertiary care hospital: epidemiology and factors influencing mortality. Eur. J. Clin. Microbiol. Infect. Dis. 22(4), 254–257 (2003).
  • Andes DR, Safdar N, Baddley JW et al.; Mycoses Study Group. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis. 54(8), 1110–1122 (2012).
  • Romani L. Immunity to fungal infections. Nat. Rev. Immunol. 11(4), 275–288 (2011).
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10(2), 112–122 (2012).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006).
  • Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185(10), 1483–1489 (2002).
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6(1), 67–78 (2008).
  • Van der Graaf CA, Netea MG, Morré SA et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur. Cytokine Netw. 17(1), 29–34 (2006).
  • Woehrle T, Du W, Goetz A et al. Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine 41(3), 322–329 (2008).
  • Plantinga TS, Johnson MD, Scott WK et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J.Infect. Dis. 205(6), 934–943 (2012).
  • Gow NA, Netea MG, Munro CA et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J. Infect. Dis. 196(10), 1565–1571 (2007).
  • Wells CA, Salvage-Jones JA, Li X et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180(11), 7404–7413 (2008).
  • Robinson MJ, Osorio F, Rosas M et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206(9), 2037–2051 (2009).
  • Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 10(10), 2058–2066 (2008).
  • LeibundGut-Landmann S, Gross O, Robinson MJ et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T-helper cells that produce interleukin 17. Nat. Immunol. 8(6), 630–638 (2007).
  • Gringhuis SI, den Dunnen J, Litjens M et al. Dectin-1 directs T-helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat. Immunol. 10(2), 203–213 (2009).
  • Ferwerda B, Ferwerda G, Plantinga TS et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361(18), 1760–1767 (2009).
  • Plantinga TS, van der Velden WJ, Ferwerda B et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49(5), 724–732 (2009).
  • Rosentul DC, Plantinga TS, Oosting M et al. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J. Infect. Dis. 204(7), 1138–1145 (2011).
  • Brouwer N, Dolman KM, van Houdt M, Sta M, Roos D, Kuijpers TW. Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding. J. Immunol. 180(6), 4124–4132 (2008).
  • Kozel TR, Weinhold LC, Lupan DM. Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect. Immun. 64(8), 3360–3368 (1996).
  • Minchinton RM, Dean MM, Clark TR, Heatley S, Mullighan CG. Analysis of the relationship between mannose-binding lectin (MBL) genotype, MBL levels and function in an Australian blood donor population. Scand. J. Immunol. 56(6), 630–641 (2002).
  • Babovic-Vuksanovic D, Snow K, Ten RM. Mannose-binding lectin (MBL) deficiency. Variant alleles in a midwestern population of the United States. Ann. Allergy Asthma Immunol. 82(2), 134–138, 141; quiz 142 (1999).
  • Lipscombe RJ, Sumiya M, Summerfield JA, Turner MW. Distinct physicochemical characteristics of human mannose binding protein expressed by individuals of differing genotype. Immunology 85(4), 660–667 (1995).
  • Garred P, Thiel S, Madsen HO, Ryder LP, Jensenius JC, Svejgaard A. Gene frequency and partial protein characterization of an allelic variant of mannan binding protein associated with low serum concentrations. Clin. Exp. Immunol. 90(3), 517–521 (1992).
  • Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J.Immunol. 161(6), 3169–3175 (1998).
  • Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS. Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin. Infect. Dis. 37(5), 733–737 (2003).
  • Giraldo PC, Babula O, Gonçalves AK et al. Mannose-binding lectin gene polymorphism, vulvovaginal candidiasis, and bacterial vaginosis. Obstet. Gynecol. 109(5), 1123–1128 (2007).
  • Donders GG, Babula O, Bellen G, Linhares IM, Witkin SS. Mannose-binding lectin gene polymorphism and resistance to therapy in women with recurrent vulvovaginal candidiasis. BJOG 115(10), 1225–1231 (2008).
  • Liu F, Liao Q, Liu Z. Mannose-binding lectin and vulvovaginal candidiasis. Int. J. Gynaecol. Obstet. 92(1), 43–47 (2006).
  • Valdimarsson H, Stefansson M, Vikingsdottir T et al. Reconstitution of opsonizing activity by infusion of mannan-binding lectin (MBL) to MBL-deficient humans. Scand. J. Immunol. 48(2), 116–123 (1998).
  • Valdimarsson H, Vikingsdottir T, Bang P et al. Human plasma-derived mannose-binding lectin: a Phase I safety and pharmacokinetic study. Scand. J. Immunol. 59(1), 97–102 (2004).
  • Petersen KA, Matthiesen F, Agger T et al. Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin. J. Clin. Immunol. 26(5), 465–475 (2006).
  • Brouwer N, Frakking FN, van de Wetering MD et al. Mannose-binding lectin (MBL) substitution: recovery of opsonic function in vivo lags behind MBL serum levels. J.Immunol. 183(5), 3496–3504 (2009).
  • Frakking FN, Brouwer N, van de Wetering MD et al. Safety and pharmacokinetics of plasma-derived mannose-binding lectin (MBL) substitution in children with chemotherapy-induced neutropaenia. Eur. J. Cancer 45(4), 505–512 (2009).
  • Glocker EO, Hennigs A, Nabavi M et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N.Engl. J. Med. 361(18), 1727–1735 (2009).
  • Gross O, Gewies A, Finger K et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442(7103), 651–656 (2006).
  • Le Bourhis L, Benko S, Girardin SE. Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem. Soc. Trans. 35(Pt 6), 1479–1484 (2007).
  • van der Graaf CA, Netea MG, Franke B, Girardin SE, van der Meer JW, Kullberg BJ. Nucleotide oligomerization domain 2 (Nod2) is not involved in the pattern recognition of Candida albicans. Clin. Vaccine Immunol. 13(3), 423–425 (2006).
  • Hise AG, Tomalka J, Ganesan S et al. Anessential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5(5), 487–497 (2009).
  • Van De Veerdonk FL, Joosten LA, Devesa I et al. Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1β production by the fungal pathogen Candida albicans. J. Infect. Dis. 199(7), 1087–1096 (2009).
  • Sutterwala FS, Ogura Y, Zamboni DS, Roy CR, Flavell RA. NALP3: a key player in caspase-1 activation. J. Endotoxin Res. 12(4), 251–256 (2006).
  • Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat. Genet. 29(3), 301–305 (2001).
  • Omi T, Kumada M, Kamesaki T et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur. J. Hum. Genet. 14(12), 1295–1305 (2006).
  • Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am. J. Obstet. Gynecol. 200(3), 303.e1–303.e6 (2009).
  • Essner R, Rhoades K, McBride WH, Morton DL, Economou JS. IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J. Immunol. 142(11), 3857–3861 (1989).
  • Rosenwasser LJ, Klemm DJ, Dresback JK et al. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin. Exp. Allergy 25(Suppl. 2), 74–78; discussion 95 (1995).
  • Babula O, Lazdane G, Kroica J, Linhares IM, Ledger WJ, Witkin SS. Frequency of interleukin-4 (IL-4) -589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. Clin. Infect. Dis. 40(9), 1258–1262 (2005).
  • Johnson MD, Plantinga TS, van de Vosse E et al. Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin. Infect. Dis. 54(4), 502–510 (2012).
  • Romani L, Mencacci A, Grohmann U et al. Neutralizing antibody to interleukin 4 induces systemic protection and T-helper type 1-associated immunity in murine candidiasis. J. Exp. Med. 176(1), 19–25 (1992).
  • Romani L, Puccetti P, Mencacci A et al. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J. Immunol. 152(7), 3514–3521 (1994).
  • Heino M, Peterson P, Kudoh J et al.; Finnish–German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17(4), 399–403 (1997).
  • Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N.Engl. J. Med. 322(26), 1829–1836 (1990).
  • Kisand K, Bøe Wolff AS, Podkrajsek KT et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207(2), 299–308 (2010).
  • Puel A, Döffinger R, Natividad A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207(2), 291–297 (2010).
  • Van De Veerdonk FL, Plantinga TS, Hoischen A et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365(1), 54–61 (2011).
  • Liu L, Okada S, Kong XF et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208(8), 1635–1648 (2011).
  • Smeekens SP, Plantinga TS, van de Veerdonk FL et al. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS ONE 6(12), e29248 (2011).
  • Davis SD, Schaller J, Wedgwood RJ. Job’s Syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet 1(7445), 1013–1015 (1966).
  • Holland SM, DeLeo FR, Elloumi HZ et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357(16), 1608–1619 (2007).
  • Minegishi Y, Saito M, Tsuchiya S et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448(7157), 1058–1062 (2007).
  • Engelhardt KR, McGhee S, Winkler S et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124(6), 1289–302.e4 (2009).
  • Minegishi Y, Saito M, Morio T et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25(5), 745–755 (2006).
  • de Beaucoudrey L, Puel A, Filipe-Santos O et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205(7), 1543–1550 (2008).
  • Ma CS, Chew GY, Simpson N et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J.Exp. Med. 205(7), 1551–1557 (2008).
  • Milner JD, Brenchley JM, Laurence A et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452(7188), 773–776 (2008).
  • Coffman RL, Carty J. A T-cell activity that enhances polyclonal IgE production and its inhibition by interferon-γ. J. Immunol. 136(3), 949–954 (1986).
  • Pène J, Rousset F, Brière F et al. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons γ and α and prostaglandin E2. Proc. Natl Acad. Sci. USA 85(18), 6880–6884 (1988).
  • King CL, Gallin JI, Malech HL, Abramson SL, Nutman TB. Regulation of immunoglobulin production in hyperimmunoglobulin E recurrent-infection syndrome by interferon γ. Proc. Natl Acad. Sci. USA 86(24), 10085–10089 (1989).
  • Jeppson JD, Jaffe HS, Hill HR. Use of recombinant human interferon γ to enhance neutrophil chemotactic responses in Job syndrome of hyperimmunoglobulinemia E and recurrent infections. J. Pediatr. 118(3), 383–387 (1991).
  • Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM. Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore) 77(5), 345–354 (1998).
  • Winkelstein JA, Marino MC, Johnston RB Jr et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3), 155–169 (2000).
  • Matute JD, Arias AA, Wright NA et al. Anew genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114(15), 3309–3315 (2009).
  • Gallin JI, Alling DW, Malech HL et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N. Engl. J. Med. 348(24), 2416–2422 (2003).
  • Condino-Neto A, Newburger PE. Interferon-γ improves splicing efficiency of CYBB gene transcripts in an interferon-responsive variant of chronic granulomatous disease due to a splice site consensus region mutation. Blood 95(11), 3548–3554 (2000).
  • Ishibashi F, Mizukami T, Kanegasaki S et al. Improved superoxide-generating ability by interferon γ due to splicing pattern change of transcripts in neutrophils from patients with a splice site mutation in CYBB gene. Blood 98(2), 436–441 (2001).
  • Group TICGDCS. A controlled trial of interferon γ to prevent infection in chronic granulomatous disease. N. Engl. J. Med. 324(8), 509–516 (1991).
  • Seger RA. Hematopoietic stem cell transplantation for chronic granulomatous disease. Immunol. Allergy Clin. North Am. 30(2), 195–208 (2010).
  • Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M. Advances in the treatment of chronic granulomatous disease by gene therapy. Curr. Gene Ther. 7(3), 155–161 (2007).
  • Kang EM, Choi U, Theobald N et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 115(4), 783–791 (2010).
  • Stein S, Ott MG, Schultze-Strasser S et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 16(2), 198–204 (2010).
  • Riddell LA, Pinching AJ, Hill S et al. APhase III study of recombinant human interferon γ to prevent opportunistic infections in advanced HIV disease. AIDS Res. Hum. Retroviruses 17(9), 789–797 (2001).
  • Baltch AL, Bopp LH, Smith RP, Ritz WJ, Carlyn CJ, Michelsen PB. Effects of voriconazole, granulocyte–macrophage colony-stimulating factor, and interferon γ on intracellular fluconazole-resistant Candida glabrata and Candida krusei in human monocyte-derived macrophages. Diagn. Microbiol. Infect. Dis. 52(4), 299–304 (2005).
  • Dignani MC, Rex JH, Chan KW et al. Immunomodulation with interferon-γ and colony-stimulating factors for refractory fungal infections in patients with leukemia. Cancer 104(1), 199–204 (2005).
  • Poynton CH, Barnes RA, Rees J. Interferon γ and granulocyte–macrophage colony-stimulating factor for the treatment of hepatosplenic candidosis in patients with acute leukemia. Clin. Infect. Dis. 26(1), 239–240 (1998).
  • Bodasing N, Seaton RA, Shankland GS, Pithie A. γ-interferon treatment for resistant oropharyngeal candidiasis in an HIV-positive patient. J. Antimicrob. Chemother. 50(5), 765–766 (2002).
  • Gadish M, Kletter Y, Flidel O, Nagler A, Slavin S, Fabian I. Effects of recombinant human granulocyte and granulocyte–macrophage colony-stimulating factors on neutrophil function following autologous bone marrow transplantation. Leuk. Res. 15(12), 1175–1182 (1991).
  • Vazquez JA, Gupta S, Villanueva A. Potential utility of recombinant human GM-CSF as adjunctive treatment of refractory oropharyngeal candidiasis in AIDS patients. Eur. J. Clin. Microbiol. Infect. Dis. 17(11), 781–783 (1998).
  • Rókusz L, Liptay L, Kádár K. Successful treatment of chronic disseminated candidiasis with fluconazole and a granulocyte–macrophage colony-stimulating factor combination. Scand. J. Infect. Dis. 33(10), 784–786 (2001).
  • Roilides E, Holmes A, Blake C, Pizzo PA, Walsh TJ. Effects of granulocyte colony-stimulating factor and interferon-γ on antifungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J. Leukoc. Biol. 57(4), 651–656 (1995).
  • Kullberg Bj VK, Herbrecht R, Jacobs F, Aoun M, Kujath P. A double-blind, randomized, placebo-controlled Phase II study of filgrastim (recombinant granulocyte colony-stimulating factor) incombination with fluconazole for treatment of invasive candidiasis and candidemia in nonneutropenic patients. Presented at: The 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego, CA, USA, 24–27 September (1998) (abstract no. J-100).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.