290
Views
93
CrossRef citations to date
0
Altmetric
Perspective

Novel clinico–genome network modeling for revolutionizing genotype–phenotype-based personalized cancer care

Pages 33-48 | Published online: 09 Jan 2014

References

  • Garcia M, Jemal A, Ward EM et al.Global Cancer Facts and Figures 2007. American Cancer Society, Atlanta GA, USA (2007).
  • Warren JL, Mariotto AB, Meekins A, Topor M, Brown ML. Current and future utilization of services from medical oncologists. J. Clin. Oncol.26(19), 3242–3247 (2008).
  • American Cancer Society. Cancer Facts and Figures 2008. American Cancer Society, Atlanta, GA, USA (2008).
  • Roukos DH. Mea Culpa with cancer-targeted therapy: new thinking and new agents design for novel, causal networks-based, personalized biomedicine. Expert Rev. Mol. Diagn.9(3), 217–221 (2009).
  • Wood LD, Parsons DW, Jones S. The genomic landscapes of human breast and colorectal cancers. Science318(5853), 1108–1113 (2007).
  • Jones S, Zhang X, Parsons DW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science321(5897), 1801–1806 (2008).
  • Snyder M, Weissman S, Gerstein M. Personal phenotypes to go with personal genomes. Mol. Syst. Biol.5, 273 (2009).
  • Deisboeck TS. Personalizing medicine: a systems biology perspective. Mol. Syst. Biol.5, 249 (2009).
  • Roukos DH. Personalized cancer diagnostics and therapeutics. Expert Rev. Mol. Diagn.9(3), 227–229 (2009).
  • Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature458(7239), 719–724 (2009).
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol.26(10), 1135–1145 (2008).
  • Garber AM, Tunis SR. Does comparative-effectiveness research threaten personalized medicine? N. Engl. J. Med.360(19), 1925–1927 (2009).
  • Nowell PC. The clonal evolution of tumor cell populations. Science194(4260), 23–28 (1976).
  • Touw IP, Erkeland SJ. Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Mol. Ther.15(1), 13–19 (2007).
  • Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer4(5), 361–370 (2004).
  • Burstein HJ. The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med.353(16), 1652–1654 (2005).
  • Van Cutsem E, Kang Y, Chung H et al. Efficacy results from the ToGA trial: a Phase III study of trastuzumab added to standard chemotherapy (CT) in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer (GC). J. Clin. Oncol.27(Suppl.), S18, (Abstract LBA4509) (2009).
  • Linardou H, Dahabreh IJ, Kanaloupiti D et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol.9(10), 962–972 (2008).
  • Ley TJ, Mardis ER, Ding L. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature456(7218), 66–72 (2008).
  • Mardis ER, Ding L, Dooling DJ. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Donnelly P. Progress and challenges in genome-wide association studies in humans. Nature456(7223), 728–731 (2008).
  • Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle – will we get our wish? N. Engl. J. Med.358(2), 105–107 (2008).
  • Roukos DH. Personal genomics and genome-wide association studies: novel discoveries but limitations for practical personalized medicine. Ann. Surg. Oncol.16, 772–773 (2009).
  • Lin J, Cook NR, Albert C et al. Vitamins C, E and β-carotene supplementation, and cancer risk: a randomized controlled trial. J. Natl Cancer Inst.101(1), 14–23 (2009).
  • Qiao YL, Dawsey SM, Kamangar F et al. Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J. Natl Cancer Inst.101(7), 507–518 (2009).
  • Taylor PR. Prevention of gastric cancer: a miss. J. Natl Cancer Inst.99(2), 101–103 (2007).
  • Roukos DH, Murray S, Briasoulis E. Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer Biol. Ther.6, 308–312 (2007).
  • International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR et al. A second-generation human haplotype map of over 3.1 million SNPs. Nature449(7164), 851–861 (2007).
  • Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum. Mol. Genet.15, 17(R2), R109–R115 (2008).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.39, 865–869 (2007).
  • Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies breast cancer susceptibility loci. Nature447(7148), 1087–1093 (2007).
  • Stacey SN, Manolescu A, Sulem P et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet.40(6), 703–706 (2008).
  • Gold B, Kirchhoff T, Stefanov S et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc. Natl Acad. Sci. USA105(11), 4340–4345 (2008).
  • Hunter DJ, Kraft P, Jacobs KB et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet.39(7), 870–874 (2007).
  • Gudmundsson J, Sulem P, Rafnar T et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat. Genet.40(3), 281–283 (2008).
  • Eeles RA, Kote-Jarai J, Giles GG et al. Identification of multiple novel prostate cancer susceptibility loci by a genome-wide association study. Nat. Genet.40(3), 316–321 (2008).
  • Thomas G, Jacobs KB, Yeager M et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet.40(3), 310–315 (2008).
  • Amundadottir LT, Sulem P, Gudmundsson J et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet.38(6), 652–658 (2006).
  • Yeager M, Orr N, Hayes RB et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39(5), 645–649 (2007).
  • Gudmundsson J, Sulem P, Manolescu A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5), 631–637 (2007).
  • Gudmundsson J, Sulem P, Steinthorsdottir V et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against Type 2 diabetes. Nat. Genet.39(8), 977–983 (2007).
  • Sun J, Zheng SL, Wiklund F et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet.40(10), 1153–1155 (2008).
  • Zanke BW, Greenwood CM, Rangrej J et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet.39(8), 989–994 (2007).
  • Broderick P, Carvajal-Carmona L, Pittman AM et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat. Genet.39(11), 1315–1317 (2007).
  • Jaeger E, Webb E, Howarth K et al. Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat. Genet.40(1), 26–28 (2008).
  • Tomlinson IP, Webb E, Carvajal-Carmona L et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat. Genet.40(5), 623–630 (2008).
  • Tenesa A, Farrington SM, Prendergast JG et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat. Genet.40(5), 631–637 (2008).
  • Amos CI, Wu X, Broderick P et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet.40(5), 616–622 (2008).
  • Hung RJ, McKay JD, Gaborieau V et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature452(7187), 633–637 (2008).
  • Study Group of Millennium Genome Project for Cancer; Sakamoto H, Yoshimura K, Saeki N et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet.40(6), 730–740 (2008).
  • Pharoah PDP, Antoniou AC, Easton DF, Ponder BAJ. Polygenes, risk prediction and targeted prevention of breast cancer. N. Engl. J. Med.358(26), 2796–2803 (2008).
  • Haiman CA, Patterson N, Freedman ML et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet.39(5), 638–644 (2007).
  • Antoniou AC, Spurdle AB, Sinilnikova OM et al. Common breast cancer predisposition alleles modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am. J. Hum. Genet.82(4), 937–948 (2008).
  • Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution62(9), 2155–2177 (2008).
  • Roukos DH. Assessing both genetic variation (SNPs/CNVs) and gene-environment interactions may lead to personalized gastric cancer prevention. Expert Rev. Mol. Diagn.9(1), 1–6 (2009).
  • Roukos DH. Radiation therapy for breast cancer. N. Engl. J. Med.360(13), 1362–1363 (2009).
  • Ziogas D, Baltogiannis G, Fatouros M, Roukos DH. Identifying and preventing high-risk gastric cancer individuals with CDH1 mutations. Ann. Surg.247(4), 714–715 (2008).
  • Roukos DH. Linking contralateral breast cancer with genetics. Radiother. Oncol.86, 139–141 (2008).
  • Roukos DH. Genetics and genome-wide association studies: surgery-guided algorithm and promise for future breast cancer personalized surgery. Expert Rev. Mol. Diagn.8(5), 587–597 (2008).
  • Lee C, Morton CC. Structural genomic variation and personalized medicine. N. Engl. J. Med.358(7), 740–741 (2008).
  • Lupski JR. Structural variation in the human genome. N. Engl. J. Med.356(11), 1169–1171 (2007).
  • Roukos DH, Ziogas D. Human genetic and structural genomic variation: would genome-wide association studies be the solution for cancer complexity like alexander the great for the “gordian knot”? Ann. Surg. Oncol.16(3), 774–775; author reply 776–777 (2009).
  • Korbel JO, Urban AE, Affourtit JP et al. Paired-end mapping reveals extensive structural variation in the human genome. Science318(5849), 420–426 (2007).
  • Hayden EC. Genome sequencing: the third generation. Nature457(7231), 768–769 (2009).
  • Rockman MV. Reverse engineering the genotype–phenotype map with natural genetic variation. Nature456(7223), 738–744 (2008).
  • Gunter C. Quantitative genetics. Nature456(7223), 719 (2008).
  • Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science323(5916), 892–895 (2009).
  • Barabasi AL, Albert R. Emergence of scaling in random networks. Science286(5439), 509–512 (1999).
  • Durrett R. Random Graph Dynamics. Cambridge University Press, Cambridge, UK (2007).
  • Bohman T. Mathematics. Emergence of connectivity in networks. Science323(5920), 1438–1439 (2009).
  • Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell128(2), 225–231 (2007).
  • Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat. Rev. Cancer9(4), 239–252 (2008)
  • Antoniou AC, Sinilnikova OM, Simard J et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am. J. Hum. Genet.81(6), 1186–1200 (2007).
  • Finak G, Bertos N, Pepin F et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med.14(5), 518–527 (2008).
  • McAllister SS, Gifford AM, Greiner AL et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell133(6), 994–1005 (2008).
  • Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J. Comput. Biol.7(3–4), 601–620 (2000).
  • Liu B, de la Fuente A, Hoeschele I. Gene network inference via structural equation modeling in genetical genomics experiments. Genetics178(3), 1763–1776 (2008).
  • Zhu M, Yu M, Zhao S. Understanding quantitative genetics in the systems biology era. Int. J. Biol. Sci.5(2), 161–170 (2009).
  • Gerke J, Lorenz K, Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science323(5913), 498–501 (2009).
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature391(6669), 806–811 (1998).
  • Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature457(7228), 396–404 (2009).
  • Markowetz F, Bloch J, Spang R. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics21(21), 4026–4032 (2005)
  • Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T. Large scale statistical inference of signaling pathways from RNAi and microarray data. BMC Bioinformatics8, 386 (2007).
  • Wang K, Alvarez MJ, Bisikirska BC et al. Dissecting the interface between signaling and transcriptional regulation in human B cells. Pac. Symp. Biocomput.264–275 (2009).
  • Imoto S, Tamada Y, Araki H et al. Computational strategy for discovering druggable gene networks from genome-wide RNA expression profiles. Pac. Symp. Biocomput.559–571 (2006).
  • Nariai N, Kim S, Imoto S, Miyano S. Using protein–protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pac. Symp. Biocomput.336–347 (2004).
  • Segal E, Shapira M, Regev A et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet.34(2), 166–176 (2003).
  • Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat. Genet.37(4), 382–390 (2005).
  • Niida A, Smith AD, Imoto S et al. Gene set-based module discovery in the breast cancer transcriptome. BMC Bioinformatics10, 71 (2009).
  • Niida A, Smith AD, Imoto S et al. Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC Bioinformatics9, 404 (2008).
  • Basso K. Toward a systems biology approach to investigate cellular networks in normal and malignant B cells. Leukemia23(7), 1219–1225 (2009).
  • Dalla-Favera R, Pasqualucci L, Bhagat G. Genetic and phenotypic analysis of B-cell post-transplant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol.26(4), 199–211 (2008).
  • Shakya R, Szabolcs M, McCarthy E et al. The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proc. Natl Acad. Sci. USA105(19), 7040–7045 (2008).
  • Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer2(5), 331–341 (2002).
  • Van de Vijver MJ, He YD, Van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347(25), 1999–2009 (2002).
  • Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl J Med.351(27), 2817–2826 (2004).
  • Bustin SA. Molecular medicine, gene-expression profiling and molecular diagnostics: putting the cart before the horse. Biomark. Med.2(3), 201–207 (2008).
  • Roukos DH. Twenty-one-gene assay: challenges and promises in translating personal genomics and whole-genome scans into personalized treatment of breast cancer. J. Clin. Oncol.27(8), 1337–1338 (2009).
  • Huang CC, Bredel M. Use of gene signatures to improve risk estimation in cancer. JAMA299(13), 1605–1606 (2008).
  • Zhu J, Zhang B, Smith EN et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet.40(7), 854–861 (2008).
  • Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol.3, 140 (2007).
  • Taylor IW, Linding R, Warde-Farley D. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol.27(2), 199–204 (2009).
  • Sakakibara D. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature458(7234), 102–105 (2009).
  • Inomata K, Ohno A, Tochio H et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature458(7234), 106–109 (2009).
  • Burz DS, Shekhtman A. Structural biology: inside the living cell. Nature458(7234), 37–38 (2009).
  • Roukos DH. Genome-wide association studies: how predictable is a person’s cancer risk? Expert Rev. Anticancer Ther.9(4), 389–392 (2009).
  • Roukos DH. Breast-cancer stromal cells with TP53 mutations. N. Engl. J. Med.358(15), 1636; author reply 1636 (2008).
  • Pàez-Ribes M, Allen E, Hudock J et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell15(3), 220–231 (2009).
  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell15(3), 232–239 (2009).
  • Ellis LM, Reardon DA. Cancer: the nuances of therapy. Nature458(7236), 290–292 (2009).
  • Roukos DH. Tzakos A, Zografos G. Current concerns and challenge s towards tailored anti-angiogenic therapy in cancer. Expert Rev. Anticancer Ther.9(10), 1413–1416 (2009).
  • Smith EN, Kruglyak L. Gene-environment interaction in yeast gene expression. PLoS Biol.6(4), E83 (2008).
  • Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer9(1), 28–39 (2009).
  • Lewis J. From signals to patterns: space, time, and mathematics in developmental biology. Science322(5900), 399–403 (2008).
  • Bennett CN, Green JE. Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models. Breast Cancer Res.10(5), 213 (2008).
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene27(41), 5497–5510 (2008).
  • Deisboeck TS, Zhang L, Yoon J, Costa J. In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. Oncol.6(1), 34–42 (2008).
  • Roukos DH. Isolated tumor cells in breast cancer. N. Engl. J. Med.361, 1994–1995 (2009).
  • Roukos DH. Breast cancer outcomes: the crucial role of the breast surgeon in the era of personal genetics and systems biology. Ann. Surg.249(6), 1067–1068 (2009).
  • Ziogas D, Roukos DH. Genetics and personal genomics for personalized breast cancer surgery: progress and challenges in research and clinical practice. Ann. Surg. Oncol.16(7), 1771–1782 (2009).
  • Roukos DH. Targeting gastric cancer with trastuzumab: new clinical practice and innovative developments to overcome resistance. Ann. Surg. Oncol. (2009) DOI: 10.1245/s10434-009-0766-0 (Epub ahead of print).
  • Ziogas D, Roukos DH. CDH1 testing: can it predict the prophylactic or therapeutic nature of total gastrectomy in hereditary diffuse gastric cancer? Ann. Surg. Oncol.16(10), 2678–2681 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.