92
Views
13
CrossRef citations to date
0
Altmetric
Review

Putative molecular signatures for the imaging of prostate cancer

, &
Pages 65-74 | Published online: 09 Jan 2014

References

  • American Cancer Society. Cancer Facts and Figures 2009. American Cancer Society, GA, USA (2009).
  • Narain V, Cher ML, Wood DP Jr. Prostate cancer diagnosis, staging and survival. Cancer Metastasis Rev.21, 17–27 (2002).
  • Godley PA. Prostate cancer screening: promise and peril – a review. Cancer Detect. Prev.23, 316–324 (1999).
  • Barry MJ. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N. Engl. J. Med.344, 1373–1377 (2001).
  • Parekh DJ, Ankerst DP, Troyer D et al. Biomarkers for prostate cancer detection. J. Urol.178, 2252–2259 (2007).
  • Lee TH, Kantoff PW, McNaughton-Collins MF. Screening for prostate cancer. N. Engl. J. Med.360, E18 (2009).
  • Thompson IM, Pauler DK, Goodman PJ et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N. Engl. J. Med.350, 2239–2246 (2004).
  • Andriole GL, Grubb RL, III, Buys SS et al. The PLCO Project Team. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med.360, 1310–1319 (2009).
  • Pienta KJ. Critical appraisal of prostate-specific antigen in prostate cancer screening: 20 years later. Urology73, S11–S20 (2009).
  • Bensalah K, Lotan Y, Karam JA, Shariat SF. New circulating biomarkers for prostate cancer. Prostate Cancer Prostatic Dis.11, 112–120 (2008).
  • Tricoli JV, Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin. Cancer Res.10, 3943–3953 (2004).
  • Levesque M, Yu H, D’Costa M et al. Immunoreactive prostate-specific antigen in lung tumors. J. Clin. Lab. Anal.9, 375–379 (1995).
  • Varambally S, Yu J, Laxman B et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell8, 393–406 (2005).
  • Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM. Molecular markers of prostate cancer. Urol. Oncol.24, 538–551 (2006).
  • Pospisil P, Iyer LK, Adelstein SJ, Kassis AI. A combined approach to data mining of textual and structured data to identify cancer-related targets. BMC Bioinformatics7, 354 (2006).
  • Yang Y, Iyer LK, Adelstein SJ, Kassis AI. Integrative genomic data mining for discovery of potential blood-borne biomarkers for early diagnosis of cancer. PLoS ONE3, E3661 (2008).
  • Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov. Today14, 147–154 (2009).
  • Luo J, Zha S, Gage WR et al. α-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res.62, 2220–2226 (2002).
  • Rubin MA, Zhou M, Dhanasekaran SM et al. α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA287, 1662–1670 (2002).
  • Varambally S, Dhanasekaran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002).
  • Rehman I, Azzouzi AR, Catto JW et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology64, 1238–1243 (2004).
  • Sardana G, Jung K, Stephan C, Diamandis EP. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J. Proteome Res.7(8), 3329–3338 (2008).
  • Sardana G, Dowell B, Diamandis EP. Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin. Chem.54, 1951–1960 (2008).
  • Sreekumar A, Poisson LM, Rajendiran TM et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature457, 910–914 (2009).
  • Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers for human prostate cancer. Expert Rev. Proteomics4(3), 389–400 (2007).
  • Rhodes DR, Chinnaiyan AM. Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Ann. NY Acad. Sci.1020, 32–40 (2004).
  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al. Oncomine 3.0, genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9, 166–180 (2007).
  • Chen YP, Chen F. Identifying targets for drug discovery using bioinformatics. Expert Opin. Ther. Targets12, 383–389 (2008).
  • Klee EW, Finlay JA, McDonald C et al. Bioinformatics methods for prioritizing serum biomarker candidates. Clin. Chem.52, 2162–2164 (2006).
  • Weissleder R. Molecular imaging in cancer. Science312, 1168–1171 (2006).
  • Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature452, 580–589 (2008).
  • Karam JA, Mason RP, Koeneman KS, Antich PP, Benaim EA, Hsieh JT. Molecular imaging in prostate cancer. J. Cell. Biochem.90, 473–483 (2003).
  • Hricak H, Choyke PL, Eberhardt SC et al. Imaging prostate cancer: a multidisciplinary perspective. Radiology243, 28–53 (2007).
  • Futterer JJ, Barentsz J, Heijmijnk ST. Imaging modalities for prostate cancer. Expert Rev. Anticancer Ther.9, 923–937 (2009).
  • Jager PL, de Korte MA, Lub-de Hooge MN et al. Molecular imaging: what can be used today. Cancer Imaging5(Spec. No. A), S27–S32 (2005).
  • Jadvar H. Molecular imaging of prostate cancer: a concise synopsis. Mol. Imaging8, 56–64 (2009).
  • Albers MJ, Bok R, Chen AP et al. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res.68(20), 8607–8615 (2008).
  • Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl Acad. Sci. USA102, 5981–5986 (2005).
  • Banerjee SR, Foss CA, Castanares M et al. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J. Med. Chem.51, 4504–4517 (2008).
  • Serda RE, Adolphi NL, Bisoffi M, Sillerud LO. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol. Imaging6, 277–288 (2007).
  • Foss CA, Mease RC, Fan H et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin. Cancer Res.11, 4022–4028 (2005).
  • Kularatne SA, Zhou Z, Yang J et al. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted 99mTc-radioimaging agents. Mol. Pharm.6, 790–800 (2009).
  • Elsasser-Beile U, Reischl G, Wiehr S et al. PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J. Nucl. Med.50, 606–611 (2009).
  • Humblet V, Lapidus R, Williams LR et al. High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen. Mol. Imaging4, 448–462 (2005).
  • Gelmann EP, Semmes OJ. Expression of genes and proteins specific for prostate cancer. J. Urol.172, S23–S27 (2004).
  • Kelly KA, Setlur SR, Ross R et al. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res.68, 2286–2291 (2008).
  • Ho NH, Harapanhalli RS, Dahman BA et al. Synthesis and biologic evaluation of a radioiodinated quinazolinone derivative for enzyme-mediated insolubilization therapy. Bioconjug. Chem.13, 357–364 (2002).
  • Chen K, Wang K, Kirichian AM et al.In silico design, synthesis, and biological evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatase-mediated cancer diagnosis and therapy. Mol. Cancer Ther.5, 3001–3013 (2006).
  • Chen K, Al Aowad AF, Adelstein SJ, Kassis AI. Molecular-docking-guided design, synthesis, and biologic evaluation of radioiodinated quinazolinone prodrugs. J. Med. Chem.50, 663–673 (2007).
  • Pospisil P, Wang K, Al Aowad AF et al. Computational modeling and experimental evaluation of a novel prodrug for targeting the extracellular space of prostate tumors. Cancer Res.67, 2197–2205 (2007).
  • Wang K, Kirichian AM, Al Aowad AF, Adelstein SJ. Evaluation of chemical, physical, and biologic properties of tumor-targeting radioiodinated quinazolinone derivative. Bioconjugate Chem.18, 754–764 (2007).
  • Kassis AI, Korideck H, Wang K et al. Novel prodrugs for targeting diagnostic and therapeutic radionuclides to solid tumors. Molecules13, 391–404 (2008).
  • Engl T, Relja B, Marian D et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through α5 and β3 integrins. Neoplasia8, 290–301 (2006).
  • Taichman RS, Cooper C, Keller ET et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res.62, 1832–1837 (2002).
  • Hanaoka H, Mukai T, Tamamura H et al. Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl. Med. Biol.33, 489–494 (2006).
  • Jacobson O, Weiss ID, Szajek L, Farber JM. 64Cu-AMD3100 – a novel imaging agent for targeting chemokine receptor CXCR4. Bioorg. Med. Chem.17, 1486–1493 (2009).
  • McCulloch DR, Akl P, Samaratunga H et al. Expression of disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LMCaP. Clin. Cancer Res.10, 314–323 (2004).
  • Najy AJ, Day KC, Day ML. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res.68, 1092–1099 (2008).
  • Goel HL, Li J, Kogan S, Languino LR. Integrins in prostate cancer progression. Endocr. Relat. Cancer15, 657–664 (2008).
  • Wang X, Ferreira AM, Shao Q et al. b3 integrins facilitate matrix interactions during transendothelial migration of PC3 prostate tumor cells. Prostate63, 65–80 (2005).
  • Sipkins DA, Cheresh DA, Kazemi MR et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat. Med.4, 623–626 (1998).
  • Beer AJ, Haubner R, Sarbia M et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin α(v)β3 expression in man. Clin. Cancer Res.12, 3942–3949 (2006).
  • Ellegala DB, Leong-Poi H, Carpenter JE et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to α(v)β3. Circulation108, 336–341 (2003).
  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105, 10513–10518 (2008).
  • Kim HJ, Chung JK, Hwang do W, Lee DS et al.In vivo imaging of mir-221 biogenesis in papillary thyroid carcinoma. Mol. Imaging Biol.11, 71–78 (2009).
  • Rhodes DR, Yu J, Shanker K et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA101(25), 9309–9314 (2004).

Wesbite

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.