286
Views
52
CrossRef citations to date
0
Altmetric
Review

Discovery of prostate cancer biomarkers by microarray gene expression profiling

&
Pages 49-64 | Published online: 09 Jan 2014

References

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin.59(4), 225–249 (2009).
  • Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol.18(3), 581–592 (2007).
  • Heidenreich A, Aus G, Bolla M et al. EAU guidelines on prostate cancer. Eur. Urol.53(1), 68–80 (2008).
  • Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM. Molecular markers of prostate cancer. Urol. Oncol.24(6), 538–551 (2006).
  • Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol.111(1), 58–64 (1974).
  • Andriole GL, Crawford ED, Grubb RL 3rd et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med.360(13), 1310–1319 (2009).
  • Schroder FH, Hugosson J, Roobol MJ et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med.360(13), 1320–1328 (2009).
  • Freedland SJ, Humphreys EB, Mangold LA et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA294(4), 433–439 (2005).
  • Shariat SF, Karakiewicz PI, Margulis V, Kattan MW. Inventory of prostate cancer predictive tools. Curr. Opin. Urol.18(3), 279–296 (2008).
  • Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest.113(6), 913–923 (2004).
  • Stephenson AJ, Smith A, Kattan MW et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer104(2), 290–298 (2005).
  • Chen CD, Welsbie DS, Tran C et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10(1), 33–39 (2004).
  • Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science286(5439), 531–537 (1999).
  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95(25), 14863–14868 (1998).
  • van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415(6871), 530–536 (2002).
  • Luo J, Duggan DJ, Chen Y et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res.61(12), 4683–4688 (2001).
  • Magee JA, Araki T, Patil S et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res.61(15), 5692–5696 (2001).
  • Singh D, Febbo PG, Ross K et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell1(2), 203–209 (2002).
  • Best CJ, Leiva IM, Chuaqui RF et al. Molecular differentiation of high- and moderate-grade human prostate cancer by cDNA microarray analysis. Diagn. Mol. Pathol.12(2), 63–70 (2003).
  • Kristiansen G, Pilarsky C, Wissmann C et al. Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J. Pathol.205(3), 359–376 (2005).
  • Halvorsen OJ, Oyan AM, Bo TH et al. Gene expression profiles in prostate cancer: association with patient subgroups and tumour differentiation. Int. J. Oncol.26(2), 329–336 (2005).
  • True L, Coleman I, Hawley S et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc. Natl Acad. Sci. USA103(29), 10991–10996 (2006).
  • Ashida S, Nakagawa H, Katagiri T et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res.64(17), 5963–5972 (2004).
  • LaTulippe E, Satagopan J, Smith A et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res.62(15), 4499–4506 (2002).
  • Varambally S, Dhanasekaran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419(6907), 624–629 (2002).
  • Welsh JB, Sapinoso LM, Su AI et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res.61(16), 5974–5978 (2001).
  • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res.62(15), 4427–4433 (2002).
  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9(2), 166–180 (2007).
  • Dhanasekaran SM, Barrette TR, Ghosh D et al. Delineation of prognostic biomarkers in prostate cancer. Nature412(6849), 822–826 (2001).
  • Lapointe J, Li C, Higgins JP et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA101(3), 811–816 (2004).
  • Tomlins SA, Mehra R, Rhodes DR et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet.39(1), 41–51 (2007).
  • Tamura K, Furihata M, Tsunoda T et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res.67(11), 5117–5125 (2007).
  • Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403(6769), 503–511 (2000).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100(14), 8418–8423 (2003).
  • Lapointe J, Li C, Giacomini CP et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res.67(18), 8504–8510 (2007).
  • Yu YP, Landsittel D, Jing L et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol.22(14), 2790–2799 (2004).
  • Setlur SR, Royce TE, Sboner A et al. Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res.67(21), 10296–10303 (2007).
  • Bibikova M, Chudin E, Arsanjani A et al. Expression signatures that correlated with Gleason score and relapse in prostate cancer. Genomics89(6), 666–672 (2007).
  • Lapointe J, Malhotra S, Higgins JP et al. hCAP-D3 expression marks a prostate cancer subtype with favorable clinical behavior and androgen signaling signature. Am. J. Surg. Pathol.32(2), 205–209 (2008).
  • Sørensen KD, Wild PJ, Mortezavi A et al. Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin. Cancer Res.15(4), 1400–1410 (2009).
  • Knight JF, Shepherd CJ, Rizzo S et al. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br. J. Cancer.99(11), 1849–1858 (2008).
  • Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310(5748), 644–648 (2005).
  • Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer8(7), 497–511 (2008).
  • Clark J, Merson S, Jhavar S et al. Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene26(18), 2667–2673 (2007).
  • Rajput AB, Miller MA, De Luca A et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J. Clin. Pathol.60(11), 1238–1243 (2007).
  • Yoshimoto M, Joshua AM, Cunha IW et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol.21(12), 1451–1460 (2008).
  • Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res.66(17), 8347–8351 (2006).
  • Nam RK, Sugar L, Yang W et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br. J. Cancer97(12), 1690–1695 (2007).
  • Demichelis F, Fall K, Perner S et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene26(31), 4596–4599 (2007).
  • Petrovics G, Liu A, Shaheduzzaman S et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene24(23), 3847–3852 (2005).
  • Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TLJ, Visakorpi T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res.14(11), 3395–3400 (2008).
  • Tomlins SA, Rhodes DR, Yu J et al. The Role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell13(6), 519–528 (2008).
  • Carver BS, Tran J, Gopalan A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet.41(5), 619–624 (2009).
  • Bismar TA, Demichelis F, Riva A et al. Defining aggressive prostate cancer using a 12-gene model. Neoplasia8(1), 59–68 (2006).
  • Varambally S, Yu J, Laxman B et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell8(5), 393–406 (2005).
  • Cheville JC, Karnes RJ, Therneau TM et al. Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy. J. Clin. Oncol.26(24), 3930–3936 (2008).
  • Nakagawa T, Kollmeyer TM, Morlan BW et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS One3(5), E2318 (2008).
  • Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat. Genet.33(1), 49–54 (2003).
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest.115(6), 1503–1521 (2005).
  • Yu J, Rhodes DR, Tomlins SA et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res.67(22), 10657–10663 (2007).
  • King JC, Xu J, Wongvipat J et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet.41(5), 524–526 (2009).
  • Mehrian-Shai R, Chen CD, Shi T et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl Acad. Sci. USA104(13), 5563–5568 (2007).
  • Saal LH, Johansson P, Holm K et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl Acad. Sci. USA104(18), 7564–7569 (2007).
  • Luo J, Zha S, Gage WR et al. α-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res.62(8), 2220–2226 (2002).
  • Rubin MA, Zhou M, Dhanasekaran SM et al. α-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA, 287(13), 1662–1670 (2002).
  • Sreekumar A, Laxman B, Rhodes DR et al. Humoral immune response to α-methylacyl-CoA racemase and prostate cancer. J. Natl Cancer Inst.96(11), 834–843 (2004).
  • Rubin MA, Bismar TA, Andren O et al. Decreased α-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol. Biomarkers Prev.14(6), 1424–1432 (2005).
  • Bussemakers MJ, van Bokhoven A, Verhaegh GW et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res.59(23), 5975–5979 (1999).
  • Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P. Urinary prostate cancer 3 test: toward the age of reason? Urology DOI: 10.1016/j.urology.2009.03.046 (2009) (Epub ahead of print).
  • Ouyang B, Bracken B, Burke B, Chung E, Liang J, Ho SM. A duplex quantitative polymerase chain reaction assay based on quantification of α-methylacyl-CoA racemase transcripts and prostate cancer antigen 3 in urine sediments improved diagnostic accuracy for prostate cancer. J. Urol.181(6), 2508–2513 (2009).
  • Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res.13(17), 5103–5108 (2007).
  • Laxman B, Morris DS, Yu J et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res.68(3), 645–649 (2008).
  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4), 259–269 (2006).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Griffiths-Jones S. The microRNA registry. Nucleic Acids Res.32, D109–D111 (2004).
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34, D140–D144 (2006).
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res.36, D154–D158 (2008).
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1(12), 882–891 (2003).
  • Chiosea S, Jelezcova E, Chandran U et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am. J. Pathol.169(5), 1812–1820 (2006).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435(7043), 834–838 (2005).
  • Rosenfeld N, Aharonov R, Meiri E et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol.26(4), 462–469 (2008).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Li J, Smyth P, Flavin R et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol.7, 36 (2007).
  • Xi Y, Nakajima G, Gavin E et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA13(10), 1668–1674 (2007).
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res.67(13), 6130–6135 (2007).
  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene27(12), 1788–1793 (2008).
  • Ambs S, Prueitt RL, Yi M et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res.68(15), 6162–6170 (2008).
  • Tong AW, Fulgham P, Jay C et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther.16(3), 206–216 (2009).
  • Spahn M, Kneitz S, Scholz CJ et al. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int. J. Cancer DOI: 10.1002/ijc.24715 (2009) (Epub ahead of print).
  • Prueitt RL, Yi M, Hudson RS et al. Expression of microRNAs and protein-coding genes associated with perineural invasion in prostate cancer. Prostate68(11), 1152–1164 (2008).
  • Osaki M, Takeshita F, Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers13(7), 658–670 (2008).
  • Galardi S, Mercatelli N, Giorda E et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem.282(32), 23716–23724 (2007).
  • Mercatelli N, Coppola V, Bonci D et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One3(12), E4029 (2008).
  • Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res.69(8), 3356–3363 (2009).
  • Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA105(30), 10513–10518 (2008).
  • Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One4(7), E6229 (2009).
  • Chan TY, Partin AW, Walsh PC, Epstein JI. Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology56(5), 823–827 (2000).
  • Arora R, Koch MO, Eble JN, Ulbright TM, Li L, Cheng L. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer100(11), 2362–2366 (2004).
  • Dakhova O, Ozen M, Creighton CJ et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res.15(12), 3979–3989 (2009).
  • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA103(15), 5923–5928 (2006).
  • Desmedt C, Piette F, Loi S et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin. Cancer Res.13(11), 3207–3214 (2007).
  • Buyse M, Loi S, van’t Veer L et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst.98(17), 1183–1192 (2006).
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet.24(3), 133–141 (2008).
  • Henshall SM, Afar DE, Hiller J et al. Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res.63(14), 4196–4203 (2003).
  • Stuart RO, Wachsman W, Berry CC et al.In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl Acad. Sci. USA101(2), 615–620 (2004).
  • Richardson AM, Woodson K, Wang Y et al. Global expression analysis of prostate cancer-associated stroma and epithelia. Diagn. Mol. Pathol.16(4), 189–197 (2007).
  • Thorsen K, Sørensen KD, Brems-Eskildsen AS et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol. Cell. Proteomics7(7), 1214–1224 (2008).
  • Mattie MD, Benz CC, Bowers J et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer5, 24 (2006).
  • Leite KR, Sousa-Canavez JM, Reis ST et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol. Oncol. DOI:10.1016/j.urolonc.2009.02.002 (2009).
  • Bonci D, Coppola V, Musumeci M et al. The miR-15a-miR-16–11 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med.14(11), 1271–1277 (2008).
  • Sylvestre Y, De Guire V, Querido E et al. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem.282(4), 2135–2143 (2007).
  • Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun.383(3), 280–285 (2009).
  • Fujita Y, Kojima K, Hamada N et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun.377(1), 114–119 (2008).
  • Varambally S, Cao Q, Mani RS et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science322(5908), 1695–1699 (2008).
  • Shi XB, Xue L, Yang J et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc. Natl Acad. Sci. USA104(50), 19983–19988 (2007).
  • Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J. Mol. Med.86(3), 313–322 (2008).
  • Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer. RNA14(3), 417–424 (2008).
  • Kong D, Li Y, Wang Z et al. The MiR-200 Regulates PDGF-D mediated epithelial–mesenchymal transition, adhesion and invasion of prostate cancer cells. Stem Cells27(8), 1712–1721 (2009).
  • Gandellini P, Folini M, Longoni N et al. miR-205 exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res.69(6), 2287–2295 (2009).
  • Lee KH, Chen YL, Yeh SD et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene28(38), 3360–3370 (2009).
  • Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331–3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J. Biol. Chem.284(37), 24696–24704 (2009).
  • Noonan EJ, Place RF, Pookot D et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene28(14), 1714–1724 (2009).
  • Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation of microRNA in prostate cancer cell lines. Prostate68(15), 1599–1606 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.