18
Views
4
CrossRef citations to date
0
Altmetric
Review

Should microchimerism turn into rejection prophylactics?

Pages 107-118 | Published online: 09 Jan 2014

References

  • Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science102, 400 (1945).
  • Billingham RE, Reynolds J. Transplantation studies on sheets of pure epidermal epithelium and on epidermal cell suspensions. Br. J. Plast. Surg.5(1), 25–36 (1952).
  • Billingham RE, Brent L, Medawar PB. Acquired tolerance of skin homografts. Ann. NY Acad. Sci.59(3), 409–416 (1955).
  • Monaco AP, Liegeois A, Wood ML. Advances in nephrology. 5, 135–172 (1975).
  • Monaco AP. Tolerance and chimerism: separate and unequal concepts. Transplant. Proc.34(6), 1991–1997 (2002).
  • Starzl TE, Demetris AJ, Trucco M et al. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology17(6), 1127–1152 (1993).
  • Starzl TE, Demetris AJ, Murase N, Ildstad S, Ricordi C, Trucco M. Cell migration, chimerism, and graft acceptance. Lancet339(8809), 1579–1582 (1992).
  • Drexler C, Wagner T. Blood group chimerism. Curr. Opin. Hematol.13(6), 484–489 (2006).
  • Zhong Xy, Holzgreve W, Hahn S. Direct quantification of fetal cells in maternal blood by real-time PCR. Prenat. Diagn.26(9), 850–854 (2006).
  • Bayes-Genis A, Bellosillo B, De La Calle O et al. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J. Heart Lung Transplant.24(12), 2179–2183 (2005).
  • Bayes-Genis A, Roura S, Prat-Vidal C et al. Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1), S40–S45 (2007).
  • Piper KP, Mclarnon A, Arrazi J et al. Functional HY-specific CD8+ T cells are found in a high proportion of women following pregnancy with a male fetus. Biol. Reprod.76(1), 96–101 (2007).
  • Bianchi DW. Fetomaternal cell trafficking: a new cause of disease? Am. J. Med. Genet.91(1), 22–28 (2000).
  • Bianchi DW. Robert E. Gross lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J. Pediatr. Surg.42(1), 12–18 (2007).
  • Sarkar K, Miller FW. Possible roles and determinants of microchimerism in autoimmune and other disorders. Autoimmun. Rev.3(6), 454–463 (2004).
  • Stevens AM. Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders? Lupus15(11), 820–826 (2006).
  • Willer CJ, Herrera BM, Morrison KM, Sadovnick AD, Ebers GC. Association between microchimerism and multiple sclerosis in Canadian twins. J. Neuroimmunol.179(1–2), 145–151 (2006).
  • Kremer Hovinga IC, Koopmans M, De Heer E, Bruijn JA, Bajema IM. Chimerism in systemic lupus erythematosus – three hypotheses. Rheumatology (Oxford)46(2), 200–208 (2007).
  • Artlett CM, Miller FW, Rider LG. Persistent maternally derived peripheral microchimerism is associated with the juvenile idiopathic inflammatory myopathies. Rheumatology (Oxford)40(11), 1279–1284 (2001).
  • Reed W, Lee TH, Norris PJ, Utter GH, Busch MP. Transfusion-associated microchimerism: a new complication of blood transfusions in severely injured patients. Semin. Hematol.44(1), 24–31 (2007).
  • Fast LD. Microchimerism: a lasting legacy of transfusion? Transfusion46(11), 1856–1858 (2006).
  • Kusaka M, Pratschke J, Wilhelm MJ et al. Activation of inflammatory mediators in rat renal isografts by donor brain death. Transplantation69(3), 405–410 (2000).
  • Takada M, Nadeau KC, Hancock WW et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation65(12), 1533–1542 (1998).
  • Weiss S, Kotsch K, Francuski M et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am. J. Transplant.7(6), 1584–1593 (2007).
  • Baldwin WM 3rd, Pruitt SK, Brauer RB, Daha MR, Sanfilippo F. Complement in organ transplantation. Contributions to inflammation, injury, and rejection. Transplantation59(6), 797–808 (1995).
  • Hancock WW. Chemokines and transplant immunobiology. J. Am. Soc. Nephrol.13(3), 821–824 (2002).
  • Hancock WW, Gao W, Faia KL, Csizmadia V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol.12(5), 511–516 (2000).
  • Starzl TE, Zinkernagel RM. Antigen localization and migration in immunity and tolerance. N. Engl. J. Med.339(26), 1905–1913 (1998).
  • Starzl TE, Murase N. Microchimerism, macrochimerism, and tolerance. Clin. Transplant.14(4 Pt 1), 351–354 (2000).
  • Reed WF, Lee TL, Trachtenberg E, Vinson M, Busch MP. Detection of microchimerism by PCR is a function of amplification strategy. Transfusion41(1), 39–44 (2001).
  • Pujal JM, Gallardo D. PCR-based methodology for molecular microchimerism detection and quantification. Exp. Biol. Med. (Maywood)233(9), 1161–1170 (2008).
  • Frankel W, Chan A, Corringham RE, Shepherd S, Rearden A, Wang-Rodriguez J. Detection of chimerism and early engraftment after allogeneic peripheral blood stem cell or bone marrow transplantation by short tandem repeats. Am. J. Hematol.52(4), 281–287 (1996).
  • Scharf SJ, Smith AG, Hansen JA, Mcfarland C, Erlich HA. Quantitative determination of bone marrow transplant engraftment using fluorescent polymerase chain reaction primers for human identity markers. Blood85(7), 1954–1963 (1995).
  • Hochberg EP, Miklos DB, Neuberg D et al. A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood101(1), 363–369 (2003).
  • Maas F, Schaap N, Kolen S et al. Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia17(3), 630–633 (2003).
  • Alizadeh M, Bernard M, Danic B et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood99(12), 4618–4625 (2002).
  • Garavito G, Klein D, Denis M, Pugliese A, Ricordi C, Pastori RL. Real-time sequence-specific primer polymerase chain reaction amplification of HLA class II alleles: a novel approach to analyze microchimerism. Transplantation73(5), 822–825 (2002).
  • Spriewald BM, Wassmuth R, Carl HD et al. Microchimerism after liver transplantation: prevalence and methodological aspects of detection. Transplantation66(1), 77–83 (1998).
  • Lambert NC, Erickson TD, Yan Z et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum.50(3), 906–914 (2004).
  • Pezzoli N, Silvy M, Woronko A et al. Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards. Leuk. Res.31(9), 1175–1183 (2007).
  • Kristt D, Stein J, Yaniv I, Klein T. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility. Bone Marrow Transplant39(5), 255–268 (2007).
  • Bai L, Deng YM, Dodds AJ, Milliken S, Moore J, Ma DD. A sybr green-based real-time PCR method for detection of haemopoietic chimerism in allogeneic haemopoietic stem cell transplant recipients. Eur. J. Haematol.77(5), 425–431 (2006).
  • Buno I, Nava P, Simon A et al. A comparison of fluorescent in situ hybridization and multiplex short tandem repeat polymerase chain reaction for quantifying chimerism after stem cell transplantation. Haematologica90(10), 1373–1379 (2005).
  • Dubernard Jm, Lengele B, Morelon E et al. Outcomes 18 months after the first human partial face transplantation. N. Engl. J. Med.357(24), 2451–2460 (2007).
  • Costa JM, Benachi A, Gautier E, Jouannic JM, Ernault P, Dumez Y. First-trimester fetal sex determination in maternal serum using real-time PCR. Prenat. Diagn.21(12), 1070–1074 (2001).
  • Hromadnikova I, Houbova B, Hridelova D et al. Replicate real-time PCR testing of DNA in maternal plasma increases the sensitivity of non-invasive fetal sex determination. Prenat. Diagn.23(3), 235–238 (2003).
  • Pujal JM, Grinyo JM, Gil-Vernet S et al. Early hematopoietic microchimerism predicts clinical outcome after kidney transplantation. Transplantation84(9), 1103–1111 (2007).
  • Ko S, Deiwick A, Dinkel A, Wonigeit K, Schlitt HJ. Functional relevance of donor-derived hematopoietic microchimerism only for induction but not for maintenance of allograft acceptance. Transplant. Proc.31(1–2), 920–921 (1999).
  • Sahota A, Gao S, Hayes J, Jindal RM. Microchimerism and rejection: a meta-analysis. Clin. Transplant.14(4 Pt 1), 345–350 (2000).
  • Shirwan H, Wu GD, Barwari L, Liu A, Cramer DV. Induction of allograft nonresponsiveness after intrathymic inoculation with donor class I allopeptides. II. Evidence for persistent chronic rejection despite high levels of donor microchimerism. Transplantation64(12), 1671–1676 (1997).
  • Domiati-Saad R, Klintmalm GB, Netto G, Agura ED, Chinnakotla S, Smith DM. Acute graft versus host disease after liver transplantation: patterns of lymphocyte chimerism. Am. J. Transplant.5(12), 2968–2973 (2005).
  • Calne R, Davies H. Organ graft tolerance: the liver effect. Lancet343(8889), 67–68 (1994).
  • Benseler V, Mccaughan GW, Schlitt HJ, Bishop GA, Bowen DG, Bertolino P. The liver: a special case in transplantation tolerance. Semin. Liver Dis.27(2), 194–213 (2007).
  • Starzl TE, Lakkis FG. The unfinished legacy of liver transplantation: emphasis on immunology. Hepatology43(2 Suppl. 1), S151–S163 (2006).
  • Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J. Exp. Med.171(1), 307–314 (1990).
  • Austyn JM, Larsen CP. Migration patterns of dendritic leukocytes. Implications for transplantation. Transplantation49(1), 1–7 (1990).
  • Kupiec-Weglinski JW, Austyn JM, Morris PJ. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J. Exp. Med.167(2), 632–645 (1988).
  • Caillat-Zucman S, Legendre C, Suberbielle C et al. Microchimerism frequency two to thirty years after cadaveric kidney transplantation. Hum. Immunol.41(1), 91–95 (1994).
  • Suberbielle C, Caillat-Zucman S, Legendre C et al. Peripheral microchimerism in long-term cadaveric-kidney allograft recipients. Lancet343(8911), 1468–1469 (1994).
  • Strober S, Benike C, Krishnaswamy S, Engleman EG, Grumet FC. Clinical transplantation tolerance twelve years after prospective withdrawal of immunosuppressive drugs: studies of chimerism and anti-donor reactivity. Transplantation69(8), 1549–1554 (2000).
  • Vanbuskirk AM, Burlingham WJ, Jankowska-Gan E et al. Human allograft acceptance is associated with immune regulation. J. Clin. Invest.106(1), 145–155 (2000).
  • Hisanaga M, Hundrieser J, Boker K et al. Development, stability, and clinical correlations of allogeneic microchimerism after solid organ transplantation. Transplantation61(1), 40–45 (1996).
  • Devlin J, Doherty D, Thomson L et al. Defining the outcome of immunosuppression withdrawal after liver transplantation. Hepatology27(4), 926–933 (1998).
  • Mcdaniel HB, Yang M, Sidner RA, Jindal RM, Sahota A. Prospective study of microchimerism in transplant recipients. Clin. Transplant.13(2), 187–192 (1999).
  • Sivasai KS, Alevy YG, Duffy BF et al. Peripheral blood microchimerism in human liver and renal transplant recipients: rejection despite donor-specific chimerism. Transplantation64(3), 427–432 (1997).
  • Elwood ET, Larsen CP, Maurer DH et al. Microchimerism and rejection in clinical transplantation. Lancet349(9062), 1358–1360 (1997).
  • Reinsmoen NL, Jackson A, Hertz M et al. Peripheral blood allogeneic microchimerism in lung and cardiac allograft recipients. J. Leukoc. Biol.66(2), 306–309 (1999).
  • Billingham RE, Brent L, Medawar PB. Activity acquired tolerance of foreign cells. Nature172(4379), 603–606 (1953).
  • Anderson D, Billingham ME, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity (5), 379 (1951).
  • Parry SL, Hall FC, Olson J, Kamradt T, Sonderstrup G. Autoreactivity versus autoaggression: a different perspective on human autoantigens. Curr. Opin. Immunol.10(6), 663–668 (1998).
  • Rovere-Querini P, Manfredi AA, Sabbadini MG. Environmental adjuvants, apoptosis and the censorship over autoimmunity. Autoimmun. Rev.4(8), 555–560 (2005).
  • Starzl TE, Demetris AJ, Trucco M et al. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation55(6), 1272–1277 (1993).
  • Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, Von Andrian UH. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol.7(10), 1092–1100 (2006).
  • Duncan SR, Capetanakis NG, Lawson BR, Theofilopoulos AN. Thymic dendritic cells traffic to thymi of allogeneic recipients and prolong graft survival. J. Clin. Invest.109(6), 755–764 (2002).
  • Ochando JC, Homma C, Yang Y et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol.7(6), 652–662 (2006).
  • Taniguchi H, Toyoshima T, Fukao K, Nakauchi H. Presence of hematopoietic stem cells in the adult liver. Nat. Med.2(2), 198–203 (1996).
  • Tajik N, Singal D, Pourmand G et al. Prospective study of microchimerism in renal allograft recipients: association between HLA-DR matching, microchimerism and acute rejection. Clin. Transplant.15(3), 192–198 (2001).
  • Sykes M, Sachs DH. Bone marrow transplantation as a means of inducing tolerance. Semin. Immunol.2(6), 401–417 (1990).
  • Murase N, Starzl TE, Tanabe M et al. Variable chimerism, graft-versus-host disease, and tolerance after different kinds of cell and whole organ transplantation from lewis to brown norway rats. Transplantation60(2), 158–171 (1995).
  • Thomson Aw, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells13(6), 622–639 (1995).
  • Ehl S, Aichele P, Ramseier H et al. Antigen persistence and time of T-cell tolerization determine the efficacy of tolerization protocols for prevention of skin graft rejection. Nat. Med.4(9), 1015–1019 (1998).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Bonilla WV, Geuking MB, Aichele P, Ludewig B, Hengartner H, Zinkernagel RM. Microchimerism maintains deletion of the donor cell-specific CD8+ T cell repertoire. J. Clin. Invest.116(1), 156–162 (2006).
  • Kiyomoto T, Toyokawa H, Nakao A et al. The difficulty of eliminating donor leukocyte microchimerism in rat recipients bearing established organ allografts. Transplantation81(3), 438–444 (2006).
  • Shirwan H, Wang HK, Barwari L, Makowka L, Cramer DV. Pretransplant injection of allograft recipients with donor blood or lymphocytes permits allograft tolerance without the presence of persistent donor microchimerism. Transplantation61(9), 1382–1386 (1996).
  • Kawai T, Wee SL, Bazin H et al. Association of natural killer cell depletion with induction of mixed chimerism and allograft tolerance in non-human primates. Transplantation70(2), 368–374 (2000).
  • Hamano K, Rawsthorne MA, Bushell AR, Morris PJ, Wood KJ. Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for maintenance of tolerance to alloantigen in vivo in anti-CD4 treated recipients. Transplantation62(6), 856–860 (1996).
  • Wekerle T, Blaha P, Koporc Z, Bigenzahn S, Pusch M, Muehlbacher F. Mechanisms of tolerance induction through the transplantation of donor hematopoietic stem cells: central versus peripheral tolerance. Transplantation75(9 Suppl.), S21–S25 (2003).
  • Van Pel M, Van Breugel DW, Van Wijk M et al. Donor-specific tolerance in a murine model: the result of extra-thymic T cell deletion? Transplant. Immunol.11(3–4), 375–384 (2003).
  • Ramsdell F, Fowlkes BJ. Maintenance of in vivo tolerance by persistence of antigen. Science257(5073), 1130–1134 (1992).
  • Monaco AP. Prospects and strategies for clinical tolerance. Transplant. Proc.36(1), 227–231 (2004).
  • Sykes M. Mechanisms of tolerance induced via mixed chimerism. Front. Biosci.12, 2922–2934 (2007).
  • Guo K, Inaba M, Li M et al. Long-term donor-specific tolerance in rat cardiac allografts by intrabone marrow injection of donor bone marrow cells. Transplantation85(1), 93–101 (2008).
  • Karim M, Steger U, Bushell AR, Wood KJ. The role of the graft in establishing tolerance. Front. Biosci.7, E129–E154 (2002).
  • Gassel HJ, Otto C, Klein I et al. Persistence of stable intragraft cell chimerism in rat liver allografts after drug-induced tolerance. Transplantation71(12), 1848–1852 (2001).
  • Adler SH, Turka LA. Immunotherapy as a means to induce transplantation tolerance. Curr. Opin. Immunol.14(5), 660–665 (2002).
  • Nemlander A, Soots A, Von Willebrand E, Husberg B, Hayry P. Redistribution of renal allograft-responding leukocytes during rejection. II. Kinetics and specificity. J. Exp. Med.156(4), 1087–1100 (1982).
  • Demetris Aj, Qian S, Sun H et al. Early events in liver allograft rejection. Delineation of sites of simultaneous intragraft and recipient lymphoid tissue sensitization. Am. J. Pathol.138(3), 609–618 (1991).
  • Murase N, Demetris AJ, Woo J et al. Graft-versus-host disease after brown norway-to-lewis and lewis-to-brown norway rat intestinal transplantation under fk506. Transplantation55(1), 1–7 (1993).
  • Demetris AJ, Murase N, Fujisaki S, Fung JJ, Rao AS, Starzl TE. Hematolymphoid cell trafficking, microchimerism, and GVH reactions after liver, bone marrow, and heart transplantation. Transplant. Proc.25(6), 3337–3344 (1993).
  • Terakura M, Murase N, Demetris AJ, Ye Q, Thomson AW, Starzl TE. Lymphoid/nonlymphoid compartmentalization of donor leukocyte chimerism in rat recipients of heart allografts, with or without adjunct bone marrow. Transplantation66(3), 350–357 (1998).
  • Sakamoto T, Ye Q, Lu L, Demetris AJ, Starzl TE, Murase N. Donor hematopoietic progenitor cells in nonmyeloablated rat recipients of allogeneic bone marrow and liver grafts. Transplantation67(6), 833–840 (1999).
  • Ichikawa N, Demetris AJ, Starzl TE et al. Donor and recipient leukocytes in organ allografts of recipients with variable donor-specific tolerance: With particular reference to chronic rejection. Liver Transplant.6(6), 686–702 (2000).
  • Kawai T, Cosimi AB, Spitzer TR et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med.358(4), 353–361 (2008).
  • Manilay JO, Pearson DA, Sergio JJ, Swenson KG, Sykes M. Intrathymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation66(1), 96–102 (1998).
  • Tomita Y, Khan A, Sykes M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J. Immunol.153(3), 1087–1098 (1994).
  • Khan A, Tomita Y, Sykes M. Thymic dependence of loss of tolerance in mixed allogeneic bone marrow chimeras after depletion of donor antigen. Peripheral mechanisms do not contribute to maintenance of tolerance. Transplantation62(3), 380–387 (1996).
  • Sykes M. Mixed chimerism and transplant tolerance. Immunity14(4), 417–424 (2001).
  • Salgar SK, Shapiro R, Dodson F et al. Infusion of donor leukocytes to induce tolerance in organ allograft recipients. J. Leukoc. Biol.66(2), 310–314 (1999).
  • Garcia-Morales R, Carreno M, Mathew J et al. Continuing observations on the regulatory effects of donor-specific bone marrow cell infusions and chimerism in kidney transplant recipients. Transplantation65(7), 956–965 (1998).
  • Garcia-Morales R, Carreno M, Mathew J et al. The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow assays in kidney transplant recipients. J. Clin. Invest.99(5), 1118–1129 (1997).
  • Ciancio G, Burke GW, Moon J et al. Donor bone marrow infusion in deceased and living donor renal transplantation. Yonsei Med. J.45(6), 998–1003 (2004).
  • Ciancio G, Miller J, Garcia-Morales RO et al. Six-year clinical effect of donor bone marrow infusions in renal transplant patients. Transplantation71(7), 827–835 (2001).
  • Millan MT, Shizuru JA, Hoffmann P et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation73(9), 1386–1391 (2002).
  • Lubaroff DM, Silvers WK. Importance of chimerism in maintaining tolerance of skin allografts in mice. J. Immunol.111(1), 65–71 (1973).
  • Cai J, Lee J, Jankowska-Gan E et al. Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J. Exp. Med.199(7), 1017–1023 (2004).
  • Girlanda R, Rela M, Williams R, O’Grady JG, Heaton ND. Long-term outcome of immunosuppression withdrawal after liver transplantation. Transplant. Proc.37(4), 1708–1709 (2005).
  • Wood K, Sachs DH. Chimerism and transplantation tolerance: cause and effect. Immunol. Today17(12), 584–587; discussion 588 (1996).
  • Cosimi AB, Sachs DH. Mixed chimerism and transplantation tolerance. Transplantation77(6), 943–946 (2004).
  • Buhler LH, Spitzer TR, Sykes M et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation74(10), 1405–1409 (2002).
  • Bunce M, O’Neill CM, Barnardo MC et al. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens46(5), 355–367 (1995).
  • Claas F. Chimerism as a tool to induce clinical transplantation tolerance. Curr. Opin. Immunol.16(5), 578–583 (2004).
  • Adams DH, Hutchinson IV. Microchimerism and graft tolerance: cause or effect? Lancet349(9062), 1336–1337 (1997).
  • Redmond WL, Marincek BC, Sherman LA. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J. Immunol.174(4), 2046–2053 (2005).
  • Walker LS, Abbas AK. The enemy within: Keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol.2(1), 11–19 (2002).
  • Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol.3(3), 199–210 (2003).
  • Hernandez J, Aung S, Redmond WL, Sherman LA. Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med.194(6), 707–717 (2001).
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001).
  • Kurtz J, Wekerle T, Sykes M. Tolerance in mixed chimerism – a role for regulatory cells? Trends Immunol.25(10), 518–523 (2004).
  • Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N. Engl. J. Med.346(1), 5–15 (2002).
  • Lagaaij EL, Cramer-Knijnenburg GF, Van Kemenade FJ, Van Es LA, Bruijn JA, Van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet357(9249), 33–37 (2001).
  • Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. Natural history, risk factors, and impact of subclinical rejection in kidney transplantation. Transplantation78(2), 242–249 (2004).
  • Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N. Engl. J. Med.349(24), 2326–2333 (2003).
  • Ashto J, Giral M, Brouard S, Soulillou JP. Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation84(10), 1215–1219 (2007).
  • Louis S, Braudeau C, Giral M et al. Contrasting CD25HICD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation81(3), 398–407 (2006).
  • Braudeau C, Racape M, Giral M et al. Variation in numbers of CD4+CD25highFOXP3+ T cells with normal immuno-regulatory properties in long-term graft outcome. Transpl. Int.20(10), 845–855 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.