47
Views
7
CrossRef citations to date
0
Altmetric
Review

Clinical implication of endothelial progenitor cells

, , &
Pages 89-105 | Published online: 09 Jan 2014

References

  • Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood91(10), 3527–3561 (1998).
  • Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodelling. Pharm. Res.58(2), 148–151 (2008).
  • Hirsch EZ, Chisolm GM 3rd, White HM. Reendothelialization and maintenance of endothelial integrity in longitudinal denuded tracks in the thoracic aorta of rats. Atherosclerosis46, 287–307 (1983).
  • Reidy MA, Bowyer DE. Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study. Atherosclerosis29, 459–466 (1978).
  • Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc. Res.78, 413–421 (2008).
  • Petit I, Jin D, Rafii S. The SDF-1 CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol.28, 299–307 (2007).
  • Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niches requires MMP-9 mediated release of kit-ligand. Cell109, 625–637 (2002).
  • Luttun A, Verfaillie CM. Will the real EPC please stand up? Blood109, 1795–1796 (2007).
  • Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia21, 1141–1149 (2007).
  • Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348, 593–600 (2003).
  • Van Beem RT, Noort WA, Voermans C et al. The presence of activated CD4(+) T cells is essential for the formation of colony-forming unit-endothelial cells by CD14(+) cells. J. Immunol.180, 5141–5148 (2008).
  • Dimmeler S, Aicher A, Vasa M et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest.108, 391–397 (2001).
  • Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res.87, 434–439 (2000).
  • Kalka C, Masuda H, Takahashi T et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl Acad. Sci. USA97, 3422–3427 (2000).
  • Yoder MC, Mead LE, Prater D et al. Re-defining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood109, 1801–1809 (2007).
  • Ingram DA, Mead LE, Tanaka H et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood104, 2752–2760 (2004).
  • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood105, 2783–2786 (2005).
  • Yoon CH, Hur J, Park KW et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation112, 1618–1627 (2005).
  • Gulati R, Jevremovic D, Peterson TE et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res.93, 1023–1025 (2003).
  • Hur J, Yoon CH, Kim HS et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol.24, 288–293 (2004).
  • Krenning G, Krenning G, Dankers PY, Jovanovic D, van Luyn MJ, Harmsen MC. Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomaterials.28(8), 1470–1479 (2007)
  • Krenning G, van der Strate B, Schipper M et al. CD34+ cells augment endothelial cell. differentiation of CD14+ endothelial progenitor cells in vitro. J. Cell. Mol. Med. DOI: 10.1111/j.1582–4934.2008.00479.x (2008) (Epub ahead of print).
  • Zhang SJ, Zhang H, Wei YJ et al. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res.16(6), 577–584 (2006).
  • Smadja DM, Basire A, Amelot A et al. Thrombin bound to a fibrin clot confers angiogenic and hemostatic properties on endothelial progenitor cells. J. Cell. Mol. Med.12(3), 975–986 (2008).
  • Hristov M, Zernecke A, Bidzhekov K et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ. Res.100, 590–597 (2007).
  • Kalka C, Masuda H, Takahashi T et al. Vascular endothelial growth factor 165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ. Res.86, 1198–1202 (2000).
  • Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived frommonocyte/macrophages and secrete angiogenic growth factors. Circulation107, 1164–1169 (2003).
  • Fan CL, Li Y, Gao PJ, Liu JJ, Zhang XJ, Zhu DL. Differentiation of endothelial progenitor cells from human umbilical cord blood CD34+ cells in vitro. Acta Pharmacol. Sin.24(3), 212–218 (2003).
  • Nagano M, Yamashita T, Hamada H et al. Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood110(1), 151–160 (2007).
  • Werner N, Junk S, Laufs U et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res.93(2), E17–E24 (2003).
  • Zhang W, Zhang G, Jin H, Hu R. Characteristics of bone marrow-derived endothelial progenitor cells in aged mice. Biochem. Biophys. Res. Commun.348(3), 1018–1023 (2006).
  • Smadja DM, Bièche I, Silvestre JS et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promoteneoangiogenesis. Arterioscler. Thromb. Vasc. Biol.28, 2137–2143 (2008).
  • Kelly MA, Hirschi KK. Signaling hierarchy regulating human endothelial cell development. Arterioscler. Thromb. Vasc. Biol.29, 718–724 (2009).
  • Hess DA, Wirthlin L, Craft TP et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood107, 2162–2169 (2006).
  • Jansen J, Hanks S, Thompson JM, Dugan MJ, Akard LP. Transplantation of hematopoietic stem cells from the peripheral blood. J. Cell. Mol. Med.9, 37–50 (2005).
  • Ziegler BL, Valtieri M, Porada GA et al. KDR receptor: a key marker defining hematopoietic stem cells. Science285, 1553–1558 (1999).
  • Sauter B, Foedinger D, Sterniczky B, Wolff K, Rappersberger K. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells: differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J. Histochem. Cytochem.46, 165–176 (1998).
  • Timmermans F, Van Hauwermeiren F, De Smedt M et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol.27, 1572–1579 (2007).
  • Case J, Mead LE, Bessler WK et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol.35, 1109–1118 (2007).
  • Vandervelde S, van Luyn MJ, Rozenbaum MH, Petersen AH, Tio RA, Harmsen MC. Stem cell-related cardiac gene expression early after murine myocardial infarction. Cardiovasc. Res.73(4), 783–793 (2006).
  • Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.18(14), 3964–3972 (1999).
  • Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124(1), 175–189 (2006).
  • Morimoto H, Takahashi M, Shiba Y et al. Bone marrow-derived CXCR4+ cells mobilized by macrophage colony-stimulating factor participate in the reduction of infarct area and improvement of cardiac remodeling after myocardial infarction in mice. Am. J. Pathol.171(3), 755–766 (2007).
  • Yamaguchi J, Kusano KF, Masuo O et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation107(9), 1322–1328 (2003).
  • Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9, 1370–1376 (2003).
  • Sasaki K, Heeschen C, Aicher A et al.Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA103, 14537–14541 (2006).
  • Foresta C, Di Mambro A, Caretta N, De Toni L, Zuccarello D, Ferlin A. Effect of vardenafil on endothelial progenitor cells in hypogonadotrophic hypogonadal patients: role of testosterone treatment. Clin. Endocrinol. (Oxf.)71(3), 412–416 (2009).
  • Heissig B, Werb Z, Rafii S, Hattori K. Role of c-kit/Kit ligand signaling in regulating vasculogenesis. Thromb. Haemost.90, 570–576 (2003).
  • Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol. Med.15(4), 180–189 (2009).
  • Mukai N, Akahori T, Komaki M et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp. Cell Res.314(3), 430–440 (2008).
  • Foresta C, Zuccarello D, Biagioli A et al. Oestrogen stimulates endothelial progenitor cells via oestrogen receptor-α. Clin. Endocrinol. (Oxf.)67(4), 520–525 (2007).
  • Venkov CD, Rankin AB, Vaughan DE. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation94, 727–733 (1996).
  • Iafrati MD, Karas RH, Aronovitz M et al. Estrogen inhibits the vascular injury response in estrogen receptor a-deficient mice. Nat. Med.3, 545–548 (1997).
  • Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol.286(2), R233–R249 (2004).
  • Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med.340, 1801–1811 (1999).
  • Iwakura A, Luedemann C, Shastry S et al. Estrogen mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation108, 3115–3121 (2003).
  • Karas RH, Schulten H, Pare G et al. Effects of estrogen on the vascular injury response in estrogen receptor α, β (double) knockout mice. Circ. Res.89, 534–539 (2001).
  • Brouchet L, Krust A, Dupont S, Chambon P, Bayard F, Arnal JF. Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-α but not estrogen receptor-β. Circulation103, 423–428 (2001).
  • Hamada H, Kim MK, Iwakura A et al. Estrogen receptors α and β mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation114, 2261–2270 (2006).
  • Strehlow K, Werner N, Berweiler J et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation107, 3059–3065 (2003).
  • Imanishi T, Kobayashi K, Hano T, Nishio I. Effect of estrogen on differentiation and senescence in endothelial progenitor cells derived from bone marrow in spontaneously hypertensive rats. Hypertens. Res.28, 763–772 (2005).
  • Zhu Y, Bian Z, Lu P et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science295, 505–508 (2002).
  • Masuda H, Kalka C, Takahashi T et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ. Res.101, 598–606 (2007).
  • Foresta C, De Toni L, Di Mambro A et al. Role of estrogen receptors in menstrual cycle-related neoangiogenesis and their influence on endothelial progenitor cell physiology. Fertil. Steril. DOI: 10.1016/j.fertnstert.2008.09.059 (2008) (Epub ahead of print).
  • Gabel SA, Walker VR, London RE, Steenbergen C, Korach KS, Murphy E. Estrogen receptor β mediates gender differences in ischemia/reperfusion injury. J. Mol. Cell. Cardiol.38, 289–297 (2005).
  • Foreman M.D. Cardiovascular disease: a men’s health hazard. Nurs. Clin. N. Am.21, 65–73 (1986).
  • Lobo AR, Speroff L. International consensus conference on postmenopausal hormone therapy and the cardiovascular system. Fertil. Steril.61, 592–595 (1994).
  • Montalcini T, Gorgone G, Gazzaruso C, Sesti G, Perticone F, Pujia A. Endogenous testosterone and endothelial function in postmenopausal women. Coron. Artery Dis.18, 9–13 (2007).
  • Levine SA, Likoff WB. The therapeutic value of testosterone propionate in angina pectoris. N. Engl. J. Med.229, 770–772 (1943).
  • Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C. Natural androgens inhibit male atherosclerosis. Circ. Res.84, 813–819 (1999).
  • Webb MC, McNeil GJ, Hayward SC, Zeigler D, Collins P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation100, 1690–1696 (1999).
  • Khaw Kt, Dowsett M, Folkerd E et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease and cancer in men: European Prospective Investigation In Cancer in Norfolk (EPIC- Norfolk) Prospective Population Study. Circulation116, 2694–2701 (2007).
  • Foresta C, Caretta N, Lana A et al. Reduced number of circulating endothelial progenitor cells in hypogonadal men. J. Clin. Endocrinol. Metab.91, 4599–4602 (2006).
  • Foresta C, Zuccarello D, De Toni L, Garolla A, Caretta N, Ferlin A. Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clin. Endocrinol. (Oxf.)68(2), 284–289 (2008).
  • Fadini GP, Albiero M, Cignarella A et al. Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clin. Sci. (Lond.)117(10), 355–364 (2009).
  • Foresta C, Ferlin A, De Toni L et al. Circulating endothelial progenitor cells and endothelial function after chronic Tadalafil treatment in subjects with erectile dysfunction. Int. J. Impotence Res.18, 484–488 (2006).
  • Zhang X, Morelli A, Luconi M et al. Testosterone regulates PDE5 expression and in vivo responsiveness to Tadalafil in rat corpus cavernosum. Eur. Urol.47, 409–416 (2005).
  • Lugg JA, Rajfer J, Gonzalez-Cadavid NF. Dihydrotestosterone is the active androgen in the maintenance of nitric oxidemediated penile erection in the rat. Endocrinology136, 1495–1501 (1995).
  • Reilly CM, Zamorano P, Stopper VS, Mills TM. Androgenic regulation of NO availability in rat penile erection. J. Androl.18, 110–115 (1997).
  • Chamness SL, Ricker DD, Crone JK et al. The effect of androgen on nitric oxide synthase in the male reproductive tract of the rat. Fertil. Steril.63, 1101–1107 (1995).
  • Baba K, Yajima M, Carrier S et al. Effect of testosterone on the number of NADPH diaphorase-stained nerve fibres in the rat corpus cavernosum and dorsal nerve. Urology56, 533–538 (2000).
  • Foresta C, Caretta N, Lana A et al. Relationship between vascular damage degrres and endothelial progenitor cells in patient with erectile dysfunction: effect of Vardenafil and PDE5 expression in bone marrow. Eur. Urol.51, 1411–1419 (2007).
  • Adams V, Lenk K, Linke A et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler. Thromb. Vasc. Biol.24, 684–690 (2004).
  • Sandri M, Adams V, Gielen S et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor celrResults of 3 randomized studies. Circulation111, 3391–3399 (2005).
  • Laufs U, Werner N, Link A et al. Physical training increases endothelial progenitor cells, inhibition of neointima formation, and enhances angiogenesis. Circulation109, 220–226 (2004).
  • van Craenenbroeck EMF, Vrints CJ, Haine SE et al. A maximal exercise bout increases the number of circulating CD341/KDR1 endothelial progenitor cells in healthy subjects. Relation with lipid profile. J. Appl. Physiol.104, 1006–1013 (2008).
  • Rehman J, Li J, Parvathaneni L et al. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J. Am. Coll. Cardiol.43, 2314–2318 (2004).
  • Steiner S, Niessner A, Ziegler S et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis181, 305–310 (2005).
  • Sarto P, Balducci E, Balconi G et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J. Card. Fail.13, 701–708 (2007).
  • Manfredini F, Rigolin GM, Malagoni AM et al. Exercise capacity and circulating endothelial progenitor cells in hemodialysis patients. Int. J. Sports Med.28, 368–373 (2007).
  • Thijssen DHJ, Vos JB, Verseyden C et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell5, 495–503 (2006).
  • Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J. Appl. Physiol.102, 847–852 (2007).
  • Walther C, Adams V, Bothur I et al. Increasing physical education in high school students: effects on concentration of circulating progenitor cells. Eur. J. Cardiovasc. Prev. Rehabil.15, 423–427 (2008).
  • Grundy SM. Statin trials and goals of cholesterol-lowering therapy. Circulation97, 1436–1439 (1998).
  • Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation101, 207–213 (2000).
  • Assmus B, Urbich C, Aicher A et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res.92(9), 1049–1055 (2003).
  • Llevadot J, Murasawa S, Kureishi Y et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest.108, 399–405 (2001).
  • Walter DH, Rittig K, Bahlmann FH et al. Statin therapy accelerates reendothelialization. A novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation105, 3017–3024 (2002).
  • Vasa M, Fichtlscherer S, Adler K et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation103, 2885–2890 (2001).
  • Spyridopoulos I, Haendeler J, Urbich C et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation110, 3136–3142 (2004).
  • Bahlmann FH, deGroot KD, Mueller O, Hertel B, Haller H, Flisser D. Stimulation of endothelial progenitor cells. A new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension45, 526–529 (2005).
  • Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J. Hypertens.23, 97–104 (2005).
  • Min TQ, Zhu CJ, Xiang WX, Hui ZJ, Peng SY. Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease. Cardiovasc. Drugs Ther.18, 203–209 (2004).
  • Heeschen C, Aicher A, Lehmann R et al. Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood102, 1340–1346 (2003).
  • Morelli A, Filippi S, Mancina R et al. Androgens regulate phosphodiesterase type 5 expression and functional activity in corpora cavernosa. Endocrinology145(7), 2253–2263 (2004).
  • Foresta C, Lana A, Cabrelle A et al. PDE-5 inhibitor, Vardenafil, increases circulating progenitor cells in humans. Int. J. Impot. Res.17, 377–380 (2005).
  • Foresta C, De Toni L, Di Mambro A, Garolla A, Ferlin A, Zuccarello D. The PDE5 inhibitor sildenafil increases circulating endothelial progenitor cells and CXCR4 expression. J. Sex. Med.6(2), 369–372 (2009).
  • Kollet O, Petit I, Kahn J et al. Human CD34(+)CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood100, 2778–2786 (2002).
  • Stellos K, Langer H, Daub K et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation17, 206–215 (2008).
  • Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med.353, 999–1007 (2005).
  • Schmidt-Lucke C, Rössig L, Fichtlscherer S et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation111, 2981–2987 (2005).
  • Libby P. Inflammation in atherosclerosis. Nature420, 868–874 (2002).
  • Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ. Res.73, 792–796 (1993).
  • Fadini GP, Agostini C, Sartore S, Avogaro A Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis194, 46–54 (2007).
  • Dimmeler S, Zeiher AM Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med.82, 671–677 (2004).
  • Vasa M, Fichtlscherer S, Aicher A et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res.89, e1–e7 (2001).
  • Loomans CJ, de Koning EJ, Staal FJ et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of Type 1 diabetes. Diabetes53, 195–199 (2004).
  • Zhu S, Liu X, Li Y, Goldschmidt-Clermont PJ, Dong C. Aging in the atherosclerosis milieu may accelerate the consumption of bone marrow endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol.27(1), 113–119 (2006).
  • Heiss C, Keymel S, Niesler U et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J. Am. Coll. Cardiol.45, 1441–1448 (2005).
  • Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J. Am. Coll. Cardiol.42, 2081–2082 (2003).
  • Scheubel RJ, Zorn H, Silber RE et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J. Am. Coll. Cardiol.42, 2073–2080 (2003).
  • Rivard A, Berthou-Soulie L, Principe N et al. Age dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J. Biol. Chem.275, 29643–29647 (2000).
  • Tschudi MR, Barton M, Bersinger NA et al. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J. Clin. Invest.98, 899–905 (1996).
  • Cooke JP, Losordo DW. Nitric oxide and angiogenesis. Circulation105, 2133–2135 (2002).
  • Hoffmann J, Haendeler J, Aicher A et al. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli. Circ. Res.89, 709–715 (2001).
  • Shantsila E, Watson T, Gregory YH. Endothelial progenitor cells in cardiovascular disorders. J. Am. Coll. Cardiol.7, 741–752 (2007).
  • Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin. Sci. (Lond.)107, 273– 280 (2004).
  • Imanishi T, Hano T, Matsuo Y, Nishio I. Oxidized low-density lipoprotein inhibits vascular endothelial growth factor-induced endothelial progenitor cell differentiation. Clin. Exp. Pharmacol. Physiol.30, 665–670 (2003).
  • Wang X, Zhu J, Chen J, Shang Y. Effects of nicotine on the number and activity of circulating endothelial progenitor cells. J. Clin. Pharmacol.44, 881–889 (2004).
  • Chen JZ, Zhu JH, Wang XX et al. Effects of homocysteine on number and activity of endothelial progenitor cells from peripheral blood. J. Mol. Cell. Cardiol.36, 233–239 (2004).
  • Fadini GP, Coracina A, Baesso I et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke37, 2277–2282 (2006).
  • Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc. Res.49, 554–560 (2001).
  • Abaci A, Oguzhan A, Kahraman S et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation99, 2239–2242 (1999).
  • Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation106, 2781–2786 (2002).
  • Fadini GP, Miorin M, Facco M et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of Type 2 diabetes mellitus. J. Am. Coll. Cardiol.45, 1449–1457 (2005).
  • Scheubel RJ, Kahrstedt S, Weber H et al. Depression of progenitor cell function by advanced glycation endproducts (AGEs): potential relevance for impaired angiogenesis in advanced age and diabetes. Exp. Gerontol.41, 540–548 (2006).
  • Hornig B, Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation93, 210–214 (1996).
  • Krankel N, Adams V, Linke A et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol.25, 698–703 (2005).
  • Redondo S, Hristov M, Gumbel D, Tejerina T, Weber C. Biphasic effect of pioglitazone on isolated human endothelial progenitor cells: involvement of peroxisome proliferatoractivated receptor-g and transforming growth factor- β1. Thromb. Haemost.97, 979–987 (2007).
  • Fadini GP, de Kreutzenberg SV, Coracina A et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur. Heart J.27, 2247–2255 (2006).
  • Kondo T, Hayashi M, Takeshita K et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler. Thromb. Vasc. Biol.24, 1442–1447 (2004).
  • Foresta C, Caretta N, Lana A, Cabrelle A, Palù G, Ferlin A. Circulating endothelial progenitor cells in subjects with erectile dysfunction. Int. J. Impot. Res.17(3), 288–290 (2005).
  • Solomon H, Man JW, Jackson G. Erectile dysfunction and the cardiovascular patient: endothelial dysfunction is the common denominator. Heart89, 251–253 (2003).
  • Massa M, Rosti V, Ferrario M et al. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood105, 199–206 (2005).
  • Shintani S, Murohara T, Ikeda H et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation103, 2776–2779 (2001).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7, 430–436 (2001).
  • Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine induced mobilization of bone-marrow-derived endothelial progenitor cells for neovascularization. Nat. Med.5, 434–438 (1999).
  • Iwaguro H, Yamaguchi J, Kalka C et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation105, 732–773 (2002).
  • Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow–derived endothelial progenitor cells participate in cerebral neovascularisation after focal cerebral ischemia in the adult mouse. Circ. Res.90, 284–288 (2002).
  • Murohara T, Ikeda H, Duan J et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J. Clin. Invest.105, 1527–1536 (2000).
  • Li TS, Hamano K, Suzuki K, Ito H, Zempo N, Matsuzaki M. Improved angiogenic potency by implantation of ex vivo hypoxia prestimulated bone marrow cells in rats. Am. J. Physiol. Heart Circ. Physiol.283, H468–H473 (2002).
  • Tateishi-Yuyama E, Matsubara H, Murohara T et al.; Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone marrow cells: a pilot study and a randomised controlled trial. Lancet360, 427–435 (2002).
  • Higashi Y, Kimura M, Hara K et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation109, 1215–1218 (2004).
  • Saigawa T, Kato K, Ozawa T et al.Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ. J.68, 1189–1193 (2004).
  • Van Huyen JP, Smadja DM, Bruneval P et al. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod. Pathol.21, 837–846 (2008).
  • Pignon B, Sevestre MA, Chatelain D, Albertini JN, Sevestre H. Histological changes after implantation of autologous bone marrow mononuclear cells for chronic critical limb ischemia. Bone Marrow Transplant.39, 647–648 (2007).
  • Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation103, 634–637 (2001).
  • Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularisation of myocardial ischemia. Circulation107, 461–468 (2003).
  • Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation106, 3009–3017 (2002).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J. Am. Coll. Cardiol.44, 1690–1699 (2004).
  • Hamano K, Nishida M, Hirata K et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn. Circ. J.65, 845–847 (2001).
  • Stamm C, Westphal B, Kleine H-D et al. Autologous bone marrow transplantation for myocardial regeneration. Lancet361, 45– 46 (2003).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106, 1913– 1918 (2002).
  • Britten MB, Abolmaali ND, Assmus B et al. Infarct remodelling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation108, 2212– 2218 (2003).
  • Wollert KC, Meyer GP, Latz J et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet364, 141–148 (2004).
  • Fernandez-Aviles F, San Roman JA, Garcia-Frade J et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ. Res.95, 742–748 (2004).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrowderived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367, 113–121 (2006).
  • Tse H-F, Kwong Y-L, Chan JKF, Lo G, Ho CL, Lau CP. Angiogenesis in ischemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet361, 47–49 (2003).
  • Perin EC, Dohmann HFR, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107, 2294–2302 (2003).
  • Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol.39, 733–742 (2005).
  • Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci.938, 221–229 (2001).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410, 701–705 (2001).
  • De Falco E, Porcelli D, Torella AR et al. SDF-1 involvement in endothelial phenotype and ischemiainduced recruitment of bone marrow progenitor cells. Blood104, 3472–3482 (2004).
  • Zohlnhofer D, Kastrati A, Schomig A. Stem cell mobilization by granulocyte-colonystimulating factor in acute myocardial infarction: lessons from the REVIVAL-2 trial. Nat. Clin. Pract. Cardiovasc. Med.4(Suppl. 1), S106–S109 (2007).
  • Ellis SG, Penn MS, Bolwell B et al. Granulocyte colony stimulating factor in patients with large acute myocardial infarction: results of a pilot dose-escalation randomized trial. Am. Heart J.152, 9–14 (2006).
  • Nienaber CA, Petzsch M, Kleine HD, Eckard H, Freund M, Ince H. Effects of granulocyte-colony-stimulating factor on mobilization of bone-marrow-derived stem cells after myocardial infarction in humans. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1), S73–S77 (2006).
  • Ripa RS, Jorgensen E, Wang Y et al. Stem cell mobilization induced by subcutaneous granulocytecolony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation113, 1983–1992 (2006).
  • Zohlnhofer D, Ott I, Mehilli J et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA295, 1003–1010 (2006).
  • Ince H, Petzsch M, Kleine HD et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor (FIRSTLINE-AMI) trial. Circulation112, 73–80 (2005).
  • Erbs S, Linke A, Adams V et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ. Res.97(8), 756–762 (2005).
  • Hill JM, Syed MA, Arai AE et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J. Am. Coll. Cardiol.46, 1643–1648 (2005).
  • Smadja DM, Basire A, Amelot A et al. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J. Cell. Mol. Med.12, 975–986 (2008).
  • Zhang Y, Ingram DA, Murphy MP et al. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol.296, H1675–H1682 (2009).
  • Di Stefano R, Barsotti MC, Armani C et al. Human peripheral blood endothelial progenitor cells synthesize and express functionally active tissue factor. Thromb. Res.123, 925–930 (2009).
  • Yang Z, Wang JM, Wang LC et al.In vitro shear stress modulates antithrombogenic potentials of human endothelial progenitor cells. J. Thromb. Thrombolysis23, 121–127 (2007).
  • Michaud S, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis187, 423–432 (2006).
  • Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation106, 2781–2786 (2002).
  • Akhavani MA, Larsen H, Paleolog E. Circulating endothelial progenitor cells as a link between synovial vascularity and cardiovascular mortality in rheumatoid arthritis. Scand. J. Rheumatol.36(2), 83–90 (2007).
  • Grisar J, Aletaha D, Steiner CW et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation111(2), 204–211 (2005).
  • Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann. Rheum. Dis.65(2), 157–163 (2006).
  • Del papa N, Columbo G, Fracchiolla N et al. Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis. Arthritis Rheumatism50(4), 1296–1304 (2004).
  • Lee Y, Li Y, Richard HB et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheumatism.56(11), 3759–3769 (2007).
  • Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science319(5860), 195–198 (2008).
  • Naik R, Jin D, Chuang E et al. Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res. Treat.107(1), 133–138 (2008).
  • Furstenberger G, von Moos R, Lucas R et al. Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br. J. Cancer94, 524–531 (2006).
  • Beerepoot LV, Mehra N, Vermaat JSP, Zonnenberg BA, Gebbink MFGB, Voest EE. Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann. Oncol.15(1), 139–145 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.