131
Views
24
CrossRef citations to date
0
Altmetric
Review

Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all

, , &
Pages 329-351 | Published online: 09 Jan 2014

References

  • Hershberger RE, Lindenfeld J, Mestroni L et al. Genetic evaluation of cardiomyopathy – a Heart Failure Society of America practice guideline. J. Card. Fail.15(2), 83–97 (2009).
  • Maron BJ, Towbin JA, Thiene G et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation113(14), 1807–1816 (2006).
  • Ingles J, Doolan A, Chiu C et al. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J. Med. Genet.42(10), e59 (2005).
  • Rodriguez JE, McCudden CR, Willis MS. Familial hypertrophic cardiomyopathy: basic concepts and future molecular diagnostics. Clin. Biochem.42(9), 755–765 (2009).
  • Sen-Chowdhry S, Syrris P, McKenna WJ. Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol.50(19), 1813–1821 (2007).
  • Nava A, Thiene G, Canciani B et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J. Am. Coll. Cardiol.12(5), 1222–1228 (1988).
  • Basso C, Thiene G, Corrado D et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation94(5), 983–991 (1996).
  • Fontaine G, Frank R, Guiraudon G et al. [Significance of intraventricular conduction disorders observed in arrhythmogenic right ventricular dysplasia]. Arch. Mal. Coeur. Vaiss.77(8), 872–879 (1984).
  • Thiene G, Basso C. Arrhythmogenic right ventricular cardiomyopathy: an update. Cardiovasc. Pathol.10(3), 109–117 (2001).
  • Corrado D, Basso C, Thiene G et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol.30(6), 1512–1520 (1997).
  • Thiene G, Corrado D, Nava A et al. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur. Heart J.12(Suppl. D), 22–25 (1991).
  • Bowles NE, Ni J, Marcus F, Towbin JA. The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol.39(5), 892–895 (2002).
  • Calabrese F, Basso C, Carturan E, Valente M, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: is there a role for viruses? Cardiovasc. Pathol.15(1), 11–17 (2006).
  • Garcia-Gras E, Lombardi R, Giocondo MJ et al. Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest.116(7), 2012–2021 (2006).
  • Djouadi F, Lecarpentier Y, Hebert JL et al. A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc. Res.84(1), 83–90 (2009).
  • Awad MM, Calkins H, Judge DP. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med.5(5), 258–267 (2008).
  • den Haan A, Tan B, Zikusoka M, Llado L. Comprehensive desmosome mutation analysis in North Americans with arrythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Cardiovasc. Genet.2(5), 428–435 (2009).
  • van Tintelen JP, Entius MM, Bhuiyan ZA et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation113(13), 1650–1658 (2006).
  • Syrris P, Ward D, Asimaki A et al. Clinical expression of plakophilin-2 mutations in familial arrhythmogenic right ventricular cardiomyopathy. Circulation113(3), 356–364 (2006).
  • Antoniades L, Tsatsopoulou A, Anastasakis A et al. Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype–phenotype relations, diagnostic features and prognosis. Eur. Heart J.27(18), 2208–2216 (2006).
  • Dalal D, James C, Devanagondi R et al. Penetrance of mutations in plakophilin-2 among families with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol.48(7), 1416–1424 (2006).
  • Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation113(13), 1634–1637 (2006).
  • Beffagna G, Occhi G, Nava A et al. Regulatory mutations in transforming growth factor-β3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res.65(2), 366–373 (2005).
  • Merner ND, Hodgkinson KA, Haywood AF et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet.82(4), 809–821 (2008).
  • Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of right ventricular cardiomyopathy. J. Cardiovasc. Electrophysiol.16(8), 927–935 (2005).
  • Ott P, Marcus FI, Sobonya RE et al. Cardiac sarcoidosis masquerading as right ventricular dysplasia. Pacing Clin. Electrophysiol.26(7 Pt 1), 1498–1503 (2003).
  • Asimaki A, Tandri H, Huang H et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med.360(11), 1075–1084 (2009).
  • Maron BJ, Gardin JM, Flack JM et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation92(4), 785–789 (1995).
  • Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation114(15), 1633–1644 (2006).
  • Niimura H, Bachinski LL, Sangwatanaroj S et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med.338(18), 1248–1257 (1998).
  • Charron P, Dubourg O, Desnos M et al. Genotype–phenotype correlations in familial hypertrophic cardiomyopathy. A comparison between mutations in the cardiac protein-C and the β-myosin heavy chain genes. Eur. Heart J.19(1), 139–145 (1998).
  • Fananapazir L, Epstein ND. Genotype–phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical β-myosin heavy chain gene mutations. Circulation89(1), 22–32 (1994).
  • Havndrup O, Bundgaard H, Andersen PS et al. The Val606Met mutation in the cardiac β-myosin heavy chain gene in patients with familial hypertrophic cardiomyopathy is associated with a high risk of sudden death at young age. Am. J. Cardiol.87(11), 1315–1317 (2001).
  • Watkins H, McKenna WJ, Thierfelder L et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med.332(16), 1058–1064 (1995).
  • Moolman JC, Corfield VA, Posen B et al. Sudden death due to troponin T mutations. J. Am. Coll. Cardiol.29(3), 549–555 (1997).
  • Christiaans I, Lekanne dit Deprez RH, van Langen IM, Wilde AA. Ventricular fibrillation in MYH7-related hypertrophic cardiomyopathy before onset of ventricular hypertrophy. Heart Rhythm6(9), 1366–1369 (2009).
  • Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat. Clin. Pract. Cardiovasc. Med.5(3), 158–168 (2008).
  • van Dijk SJ, Dooijes D, dos Remedios C et al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation119(11), 1473–1483 (2009).
  • Thierfelder L, Watkins H, MacRae C et al. A-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell77(5), 701–712 (1994).
  • Mearini G, Gedicke C, Schlossarek S et al. Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc. Res.85(2), 357–366 (2009).
  • Kirschner SE, Becker E, Antognozzi M et al. Hypertrophic cardiomyopathy-related β-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells. Am. J. Physiol. Heart Circ. Physiol.288(3), H1242–H1251 (2005).
  • Wang Y, Xu Y, Kerrick WG et al. Prolonged Ca2+ and force transients in myosin RLC transgenic mouse fibers expressing malignant and benign FHC mutations. J. Mol. Biol.361(2), 286–299 (2006).
  • Landstrom AP, Weisleder N, Batalden KB et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell Cardiol.42(6), 1026–1035 (2007).
  • Minamisawa S, Sato Y, Tatsuguchi Y et al. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.304(1), 1–4 (2003).
  • Haghighi K, Kolokathis F, Gramolini AO et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl Acad. Sci. USA103(5), 1388–1393 (2006).
  • Crilley JG, Boehm EA, Blair E et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol.41(10), 1776–1782 (2003).
  • Mestroni L, Maisch B, McKenna WJ et al. Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur. Heart J.20(2), 93–102 (1999).
  • Franz WM, Muller OJ, Katus HA. Cardiomyopathies: from genetics to the prospect of treatment. Lancet358(9293), 1627–1637 (2001).
  • Schonberger J, Seidman CE. Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am. J. Hum. Genet.69(2), 249–260 (2001).
  • Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell104(4), 557–567 (2001).
  • Codd MB, Sugrue DD, Gersh BJ, Melton LJ 3rd. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation80(3), 564–572 (1989).
  • Michels VV, Moll PP, Miller FA et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med.326(2), 77–82 (1992).
  • Honda Y, Yokota Y, Yokoyama M. Familial aggregation of dilated cardiomyopathy – evaluation of clinical characteristics and prognosis. Jpn. Circ. J.59(9), 589–598 (1995).
  • Keeling PJ, Gang Y, Smith G et al. Familial dilated cardiomyopathy in the United Kingdom. Br. Heart J.73(5), 417–421 (1995).
  • Grunig E, Tasman JA, Kucherer H et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol.31(1), 186–194 (1998).
  • Hershberger RE, Kushner JD, Parks SB. Dilated cardiomyopathy overview. In: GeneReviews at GeneTests. Medical Genetics Information Resource, WA, USA (2009).
  • Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science280(5364), 750–752 (1998).
  • Kamisago M, Sharma SD, DePalma SR et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med.343(23), 1688–1696 (2000).
  • Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of α-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell Cardiol.33(4), 723–732 (2001).
  • Li D, Czernuszewicz GZ, Gonzalez O et al. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation104(18), 2188–2193 (2001).
  • Mogensen J, Murphy RT, Shaw T et al. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol.44(10), 2033–2040 (2004).
  • MacLeod HM, Culley MR, Huber JM, McNally EM. Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Med. Genet.4, 4 (2003).
  • Antoniades L, Eftychiou C, Kyriakides T, Christodoulou K, Katritsis DG. Malignant mutation in the lamin A/C gene causing progressive conduction system disease and early sudden death in a family with mild form of limb-girdle muscular dystrophy. J. Interv. Card. Electrophysiol.19(1), 1–7 (2007).
  • van Tintelen JP, Hofstra RM, Katerberg H et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am. Heart J.154(6), 1130–1139 (2007).
  • Graber HL, Unverferth DV, Baker PB et al. Evolution of a hereditary cardiac conduction and muscle disorder: a study involving a family with six generations affected. Circulation74(1), 21–35 (1986).
  • Nelson SD, Sparks EA, Graber HL et al. Clinical characteristics of sudden death victims in heritable (chromosome 1p1–1q1) conduction and myocardial disease. J. Am. Coll. Cardiol.32(6), 1717–1723 (1998).
  • Bonne G, Di Barletta MR, Varnous S et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat. Genet.21(3), 285–288 (1999).
  • Raffaele Di Barletta M, Ricci E, Galluzzi G et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet.66(4), 1407–1412 (2000).
  • Shackleton S, Lloyd DJ, Jackson SN et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat. Genet.24(2), 153–156 (2000).
  • Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet.9(1), 109–112 (2000).
  • Carballo S, Robinson P, Otway R et al. Identification and functional characterization of cardiac troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ. Res.105(4), 375–382 (2009).
  • Chang AN, Harada K, Ackerman MJ, Potter JD. Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in α-tropomyosin. J. Biol. Chem.280(40), 34343–34349 (2005).
  • Michele DE, Gomez CA, Hong KE, Westfall MV, Metzger JM. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by β-blockade. Circ. Res.91(3), 255–262 (2002).
  • Mirza M, Marston S, Willott R et al. Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J. Biol. Chem.280(31), 28498–506 (2005).
  • Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation82(2), 507–513 (1990).
  • Dusek J, Ostadal B, Duskova M. Postnatal persistence of spongy myocardium with embryonic blood supply. Arch. Pathol.99(6), 312–317 (1975).
  • Ritter M, Oechslin E, Sutsch G et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc.72(1), 26–31 (1997).
  • Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol.36(2), 493–500 (2000).
  • Nugent AW, Daubeney PE, Chondros P et al. The epidemiology of childhood cardiomyopathy in Australia. N. Engl. J. Med.348(17), 1639–1646 (2003).
  • Lipshultz SE, Sleeper LA, Towbin JA et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med.348(17), 1647–1655 (2003).
  • Pignatelli RH, McMahon CJ, Dreyer WJ et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation108(21), 2672–2678 (2003).
  • Ichida F, Hamamichi Y, Miyawaki T et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J. Am. Coll. Cardiol.34(1), 233–240 (1999).
  • Jenni R, Oechslin EN, van der Loo B. Isolated ventricular non-compaction of the myocardium in adults. Heart93(1), 11–15 (2007).
  • Eidem BW. Noninvasive evaluation of left ventricular noncompaction: what’s new in 2009? Pediatr. Cardiol.30(5), 682–689 (2009).
  • Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart86(6), 666–671 (2001).
  • Ichida F, Tsubata S, Bowles KR et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation103(9), 1256–1263 (2001).
  • Vatta M, Mohapatra B, Jimenez S et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol.42(11), 2014–2027 (2003).
  • Kenton AB, Sanchez X, Coveler KJ et al. Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, α-dystrobrevin and FK binding protein-12. Mol. Genet. Metab.82(2), 162–166 (2004).
  • Chen R, Tsuji T, Ichida F et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol. Genet. Metab.77(4), 319–325 (2002).
  • Xing Y, Ichida F, Matsuoka T et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol. Genet. Metab.88(1), 71–77 (2006).
  • Hermida-Prieto M, Monserrat L, Castro-Beiras A et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am. J. Cardiol.94(1), 50–54 (2004).
  • Klaassen S, Probst S, Oechslin E et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation117(22), 2893–2901 (2008).
  • Hoedemaekers YM, Caliskan K, Majoor-Krakauer D et al. Cardiac β-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur. Heart J.28(22), 2732–2737 (2007).
  • Benotti JR, Grossman W, Cohn PF. Clinical profile of restrictive cardiomyopathy. Circulation61(6), 1206–1212 (1980).
  • Mogensen J, Arbustini E. Restrictive cardiomyopathy. Curr. Opin. Cardiol.24(3), 214–220 (2009).
  • Chen SC, Balfour IC, Jureidini S. Clinical spectrum of restrictive cardiomyopathy in children. J. Heart Lung Transplant.20(1), 90–92 (2001).
  • Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart91(9), 1199–1202 (2005).
  • Angelini A, Calzolari V, Thiene G et al. Morphologic spectrum of primary restrictive cardiomyopathy. Am. J. Cardiol.80(8), 1046–1050 (1997).
  • Mogensen J, Kubo T, Duque M et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest.111(2), 209–216 (2003).
  • Kaski JP, Syrris P, Burch M et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart94(11), 1478–1484 (2008).
  • Karam S, Raboisson MJ, Ducreux C et al. A de novo mutation of the β cardiac myosin heavy chain gene in an infantile restrictive cardiomyopathy. Congenit. Heart Dis.3(2), 138–143 (2008).
  • Peddy SB, Vricella LA, Crosson JE et al. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics117(5), 1830–1833 (2006).
  • Gambarin FI, Tagliani M, Arbustini E. Pure restrictive cardiomyopathy associated with cardiac troponin I gene mutation: mismatch between the lack of hypertrophy and the presence of disarray. Heart94(10), 1257 (2008).
  • Kubo T, Gimeno JR, Bahl A et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol.49(25), 2419–2426 (2007).
  • Sen-Chowdhry S, McKenna WJ. Left ventricular noncompaction and cardiomyopathy: cause, contributor, or epiphenomenon? Curr. Opin. Cardiol.23(3), 171–175 (2008).
  • Kostareva A, Gudkova A, Sjoberg G et al. Deletion in TNNI3 gene is associated with restrictive cardiomyopathy. Int. J. Cardiol.131(3), 410–412 (2009).
  • Moric-Janiszewska E, Markiewicz-Loskot G. Genetic heterogeneity of left-ventricular noncompaction cardiomyopathy. Clin. Cardiol.31(5), 201–204 (2008).
  • Maron BJ, McKenna WJ, Danielson GK et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J. Am. Coll. Cardiol.42(9), 1687–1713 (2003).
  • Semsarian C. Guidelines for the diagnosis and management of hypertrophic cardiomyopathy. Heart Lung Circ.16(1), 16–18 (2007).
  • Fatkin D. Guidelines for the diagnosis and management of familial dilated cardiomyopathy. Heart Lung Circ.16(1), 19–21 (2007).
  • Dalal D, Nasir K, Bomma C et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation112(25), 3823–3832 (2005).
  • Hamid MS, Norman M, Quraishi A et al. Prospective evaluation of relatives for familial arrhythmogenic right ventricular cardiomyopathy/dysplasia reveals a need to broaden diagnostic criteria. J. Am. Coll. Cardiol.40(8), 1445–1450 (2002).
  • Nava A, Bauce B, Basso C et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol.36(7), 2226–2233 (2000).
  • Luk A, Ahn E, Soor GS, Butany J. Dilated cardiomyopathy: a review. J. Clin. Pathol.62(3), 219–225 (2009).
  • Pilichou K, Nava A, Basso C et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation113(9), 1171–1179 (2006).
  • McKenna WJ, Thiene G, Nava A et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br. Heart J.71(3), 215–218 (1994).
  • Schiavon G, Furlan S, Marin O, Salvatori S. Myotonic dystrophy protein kinase of the cardiac muscle: evaluation using an immunochemical approach. Microsc. Res. Tech.58(5), 404–411 (2002).
  • Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.54(3), 201–211 (2009).
  • Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Heart Fail.2(3), 253–261 (2009).
  • Cirino AL, Ho CY. Genetic testing in cardiac disease: from bench to bedside. Nat. Clin. Pract. Cardiovasc. Med.3(9), 462–463 (2006).
  • Niimura H, Patton KK, McKenna WJ et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation105(4), 446–451 (2002).
  • Watkins H, Rosenzweig A, Hwang DS et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med.326(17), 1108–1114 (1992).
  • Anan R, Greve G, Thierfelder L et al. Prognostic implications of novel β cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J. Clin. Invest.93(1), 280–285 (1994).
  • Varnava AM, Elliott PM, Baboonian C et al. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation104(12), 1380–1384 (2001).
  • Watkins H, Conner D, Thierfelder L et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genet.11(4), 434–437 (1995).
  • Van Driest SL, Ackerman MJ, Ommen SR et al. Prevalence and severity of “benign” mutations in the β-myosin heavy chain, cardiac troponin T, and α-tropomyosin genes in hypertrophic cardiomyopathy. Circulation106(24), 3085–3090 (2002).
  • Van Driest SL, Vasile VC, Ommen SR et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.44(9), 1903–1910 (2004).
  • Ackerman MJ, VanDriest SL, Ommen SR et al. Prevalence and age-dependence of malignant mutations in the β-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J. Am. Coll. Cardiol.39(12), 2042–2048 (2002).
  • Van Driest SL, Maron BJ, Ackerman MJ. From malignant mutations to malignant domains: the continuing search for prognostic significance in the mutant genes causing hypertrophic cardiomyopathy. Heart90(1), 7–8 (2004).
  • Olivotto I, Girolami F, Ackerman MJ et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin. Proc.83(6), 630–638 (2008).
  • Maron BJ, Roberts WC, Arad M et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA301(12), 1253–1259 (2009).
  • Monserrat L, Gimeno-Blanes JR, Marin F et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.50(25), 2399–2403 (2007).
  • Arad M, Maron BJ, Gorham JM et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N. Engl. J. Med.352(4), 362–372 (2005).
  • Hoffmann B. Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring. Orphanet J. Rare Dis.4, 21 (2009).
  • Arbustini E, Pilotto A, Repetto A et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J. Am. Coll. Cardiol.39(6), 981–990 (2002).
  • Fatkin D, MacRae C, Sasaki T et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med.341(23), 1715–1724 (1999).
  • van Berlo JH, de Voogt WG, van der Kooi AJ et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J. Mol. Med.83(1), 79–83 (2005).
  • Mestroni L, Taylor MR. Lamin A/C gene and the heart: how genetics may impact clinical care. J. Am. Coll. Cardiol.52(15), 1261–1262 (2008).
  • Meune C, Van Berlo JH, Anselme F et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N. Engl. J. Med.354(2), 209–210 (2006).
  • University of Washington. GeneTests. Medical Genetics Information Resource, WA, USA (1993–2009) (database online).
  • Hershberger RE, Parks SB, Kushner JD et al. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin. Transl. Sci.1(1), 21–26 (2008).
  • Muntoni F, Cau M, Ganau A et al. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med.329(13), 921–925 (1993).
  • Decostre V, Ben Yaou R, Bonne G. Laminopathies affecting skeletal and cardiac muscles: clinical and pathophysiological aspects. Acta Myol.24(2), 104–109 (2005).
  • Waldmuller S, Muller M, Rackebrandt K et al. Array-based resequencing assay for mutations causing hypertrophic cardiomyopathy. Clin. Chem.54(4), 682–687 (2008).
  • Fokstuen S, Lyle R, Munoz A et al. A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy. Hum. Mutat.29(6), 879–885 (2008).
  • Zimmerman RS Cox S, Lakdawala N et al. A novel custom resequencing array for dilated cardiomyopathy (DCM). Presented at: American College of Medical Genetics Annual Meeting. Tampa, FL, USA 27 March 2009 (Abstract 354).
  • Kothiyal P, Cox S, Ebert J et al. An overview of custom array sequencing. Curr. Protoc. Hum. Genet.7(Unit 7), 17 (2009).
  • Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mol. Genet.11(20), 2499–2506 (2002).
  • Bagnall RD, Yeates L, Semsarian C. The role of large gene deletions and duplications in MYBPC3 and TNNT2 in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. DOI: 10.1016/j.ijcard.2009.07.009 (2009) (Epub ahead of print).
  • Bhuiyan ZA, van den Berg MP, van Tintelen JP et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation116(14), 1569–1576 (2007).
  • Gupta P, Bilinska ZT, Sylvius N et al. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res. Cardiol.105(3), 365–377 (2010).
  • Kruglyak L, Nickerson DA. Variation is the spice of life. Nat. Genet.27(3), 234–236 (2001).
  • Richards CS, Bale S, Bellissimo DB et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet. Med.10(4), 294–300 (2008).
  • Christensen AH, Benn M, Tybjaerg-Hansen A, Haunso S, Svendsen JH. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients – disease-causing or innocent bystanders? Cardiology115(2), 148–154 (2010).
  • Ionita-Laza I, Lange C, M Laird N. Estimating the number of unseen variants in the human genome. Proc. Natl Acad. Sci. USA106(13), 5008–5013 (2009).
  • Kuehn BM. 1000 Genomes Project promises closer look at variation in human genome. JAMA300(23), 2715 (2008).
  • Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449(7164), 851–861 (2007).
  • Kapa S, Tester DJ, Salisbury BA et al. Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation120(18), 1752–1760 (2009).
  • Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res.30(17), 3894–3900 (2002).
  • Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res.31(13), 3812–3814 (2003).
  • Jegga AG, Gowrisankar S, Chen J, Aronow BJ. PolyDoms: a whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Res.35(Database issue), D700–D706 (2007).
  • Carrier L, Schlossarek S, Willis MS, Eschenhagen T. Ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc. Res.85(2), 330–338 (2009).
  • Lechin M, Quinones MA, Omran A et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation92(7), 1808–1812 (1995).
  • Wang SX, Fu CY, Zou YB et al. Polymorphisms of angiotensin-converting enzyme 2 gene associated with magnitude of left ventricular hypertrophy in male patients with hypertrophic cardiomyopathy. Chin. Med. J. (Engl.)121(1), 27–31 (2008).
  • Lieb W, Graf J, Gotz A et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J. Mol. Med.84(1), 88–96 (2006).
  • Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet.24(11), 552–563 (2008).
  • Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J. Biol. Chem.283(4), 2156–2166 (2008).
  • Rankin J, Auer-Grumbach M, Bagg W et al. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am. J. Med. Genet. A146A(12), 1530–1542 (2008).
  • Marian AJ, Roberts R. The molecular genetic basis for hypertrophic cardiomyopathy. J. Mol. Cell Cardiol.33(4), 655–670 (2001).
  • Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc.80(6), 739–744 (2005).
  • Richard P, Charron P, Carrier L et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation107(17), 2227–2232 (2003).
  • Landstrom AP, Parvatiyar MS, Pinto JR et al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell Cardiol.45(2), 281–288 (2008).
  • Satoh M, Takahashi M, Sakamoto T et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem. Biophys. Res. Commun.262(2), 411–417 (1999).
  • Carniel E, Taylor MR, Sinagra G et al. A-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation112(1), 54–59 (2005).
  • Theis JL, Bos JM, Bartleson VB et al. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.351(4), 896–902 (2006).
  • Geier C, Perrot A, Ozcelik C et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation107(10), 1390–1395 (2003).
  • Hayashi T, Arimura T, Itoh-Satoh M et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol.44(11), 2192–2201 (2004).
  • Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.345(3), 998–1003 (2006).
  • Vasile VC, Will ML, Ommen SR et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol. Genet. Metab.87(2), 169–174 (2006).
  • Osio A, Tan L, Chen SN et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res.100(6), 766–768 (2007).
  • Arimura T, Bos JM, Sato A et al. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.54(4), 334–342 (2009).
  • Chimenti C, Pieroni M, Morgante E et al. Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation110(9), 1047–1053 (2004).
  • Sachdev B, Takenaka T, Teraguchi H et al. Prevalence of Anderson–Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation105(12), 1407–1411 (2002).
  • Gollob MH, Green MS, Tang AS et al. Identification of a gene responsible for familial Wolff–Parkinson–White syndrome. N. Engl. J. Med.344(24), 1823–1831 (2001).
  • Yang Z, McMahon CJ, Smith LR et al. Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation112(11), 1612–1617 (2005).
  • Mayosi BM, Khogali S, Zhang B, Watkins H. Cardiac and skeletal actin gene mutations are not a common cause of dilated cardiomyopathy. J. Med. Genet.36(10), 796–797 (1999).
  • Takai E, Akita H, Shiga N et al. Mutational analysis of the cardiac actin gene in familial and sporadic dilated cardiomyopathy. Am. J. Med. Genet.86(4), 325–327 (1999).
  • Tesson F, Sylvius N, Pilotto A et al. Epidemiology of desmin and cardiac actin gene mutations in a European population of dilated cardiomyopathy. Eur. Heart J.21(22), 1872–1876 (2000).
  • Duboscq-Bidot L, Charron P, Ruppert V et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur. Heart J.30(17), 2128–2136 (2009).
  • Moulik M, Vatta M, Witt SH et al.ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol.54(4), 325–333 (2009).
  • Becane HM, Bonne G, Varnous S et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin. Electrophysiol.23(11 Pt 1), 1661–1666 (2000).
  • Hershberger RE, Hanson EL, Jakobs PM et al. A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. Am. Heart J.144(6), 1081–1086 (2002).
  • Karkkainen S, Reissell E, Helio T et al. Novel mutations in the lamin A/C gene in heart transplant recipients with end stage dilated cardiomyopathy. Heart92(4), 524–526 (2006).
  • Parks SB, Kushner JD, Nauman D et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J.156(1), 161–169 (2008).
  • Sebillon P, Bouchier C, Bidot LD et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J. Med. Genet.40(8), 560–567 (2003).
  • Taylor MR, Fain PR, Sinagra G et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol.41(5), 771–780 (2003).
  • Daehmlow S, Erdmann J, Knueppel T et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun.298(1), 116–120 (2002).
  • Ehlermann P, Weichenhan D, Zehelein J et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Med. Genet.9, 95 (2008).
  • Shimizu M, Ino H, Yasuda T et al. Gene mutations in adult Japanese patients with dilated cardiomyopathy. Circ. J.69(2), 150–153 (2005).
  • Zeller R, Ivandic BT, Ehlermann P et al. Large-scale mutation screening in patients with dilated or hypertrophic cardiomyopathy: a pilot study using DGGE. J. Mol. Med.84(8), 682–691 (2006).
  • Villard E, Duboscq-Bidot L, Charron P et al. Mutation screening in dilated cardiomyopathy: prominent role of the b myosin heavy chain gene. Eur. Heart J.26(8), 794–803 (2005).
  • Haghighi K, Kolokathis F, Pater L et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest.111(6), 869–876 (2003).
  • Schmitt JP, Kamisago M, Asahi M et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science299(5611), 1410–1413 (2003).
  • McNair WP, Ku L, Taylor MR et al.SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation110(15), 2163–2167 (2004).
  • Olson TM, Michels VV, Ballew JD et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA293(4), 447–454 (2005).
  • Shi R, Zhang Y, Yang C et al. The cardiac sodium channel mutation delQKP 1507–1509 is associated with the expanding phenotypic spectrum of LQT3, conduction disorder, dilated cardiomyopathy, and high incidence of youth sudden death. Europace10(11), 1329–1335 (2008).
  • Murphy RT, Mogensen J, Shaw A et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet363(9406), 371–372 (2004).
  • Gerull B, Gramlich M, Atherton J et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet.30(2), 201–204 (2002).
  • Knoll R, Hoshijima M, Hoffman HM et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell111(7), 943–955 (2002).
  • Olson TM, Illenberger S, Kishimoto NY et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation105(4), 431–437 (2002).
  • Mohapatra B, Jimenez S, Lin JH et al. Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab.80(1–2), 207–215 (2003).
  • Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation100(5), 461–464 (1999).
  • Taylor MR, Slavov D, Ku L et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation115(10), 1244–1251 (2007).
  • Sylvius N, Duboscq-Bidot L, Bouchier C et al. Mutational analysis of the β- and δ-sarcoglycan genes in a large number of patients with familial and sporadic dilated cardiomyopathy. Am. J. Med. Genet. A120A(1), 8–12 (2003).
  • Tsubata S, Bowles KR, Vatta M et al. Mutations in the human δ-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest.106(5), 655–662 (2000).
  • Karkkainen S, Miettinen R, Tuomainen P et al. A novel mutation, Arg71Thr, in the δ-sarcoglycan gene is associated with dilated cardiomyopathy. J. Mol. Med.81(12), 795–800 (2003).
  • Bienengraeber M, Olson TM, Selivanov VA et al.ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet.36(4), 382–387 (2004).
  • Schonberger J, Wang L, Shin JT et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet.37(4), 418–422 (2005).
  • Taylor MR, Slavov D, Gajewski A et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mutat.26(6), 566–574 (2005).
  • Li D, Parks SB, Kushner JD et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet.79(6), 1030–1039 (2006).
  • Towbin JA, Hejtmancik JF, Brink P et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation87(6), 1854–1865 (1993).
  • Milasin J, Muntoni F, Severini GM et al. A point mutation in the 5´ splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum. Mol. Genet.5(1), 73–79 (1996).
  • Bione S, D’Adamo P, Maestrini E et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet.12(4), 385–389 (1996).
  • D’Adamo P, Fassone L, Gedeon A et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet.61(4), 862–867 (1997).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.