60
Views
5
CrossRef citations to date
0
Altmetric
Review

Current concepts in the genetic diagnostics of rheumatoid arthritis

, , , , , & show all
Pages 603-618 | Published online: 09 Jan 2014

References

  • Gough SCL, Simmonds MJ. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genom.8, 453–465 (2007).
  • Simmonds MJ, Gough SCL. Genetic insights into disease mechanisms of autoimmunity. Br. Med. Bull.71, 93–113 (2004).
  • Horton R, Wilming L, Rand V et al. Gene map of the extended human MHC. Nat. Rev. Genet.5, 889–899 (2004).
  • Mungall AJ, Palmer SA, Sims SK et al. The DNA sequence and analysis of human chromosome 6. Nature425, 805–811 (2003).
  • Singal DP, Blajchman MA. Histocompatibility antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes22, 429–432 (1973).
  • Nerup J, Platz P, Andersen OO et al. HLA antigens and diabetes mellitus. Lancet2, 864–866 (1974).
  • Cudworth AG, Woodrow JC. HLA system and diabetes mellitus. Diabetes24, 345–349 (1975).
  • Dorman JS, Bunker CH. HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review. Epidemiol. Rev.22, 218–227 (2000).
  • Milicic A, Lee D, Brown MA et al. HLA-DR/DQ haplotype in rheumatoid arthritis: novel allelic associations in UK Caucasians. J. Rheumatol.29, 1821–1826 (2002).
  • de Vries N, van Elderen C, Tijssen H et al. No support for HLA-DQ encoded susceptibility in rheumatoid arthritis. Arthritis Rheum.42, 1621–1627 (1999).
  • Gao SQ, Zou HY, Cheng LA et al. Analysis on haplotypes of five HLA-loci in southern Chinese Han population by sequence-based typing. J. Altern. Complement Med.2, 231–239 (2007).
  • Vignal C, Bansal AT, Balding DJ et al. Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates to non-DRB1 loci. Arthritis Rheum.60, 53–62 (2009).
  • de Vries N, Tijssen H, van Riel PL et al. Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67–74 of the HLA-DRB1 molecule. Arthritis Rheum.46, 921–928 (2002).
  • Michou L, Croiseau P, Petit-Teixeira E et al. Validation of the reshaped shared epitope HLA-DRB1 classification in rheumatoid arthritis. Arthritis Res. Ther.8, R79 (2006).
  • du Montcel ST, Michou L, Petit-Teixeira E et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum.52, 1063–1068 (2005).
  • Laiovoranta-Nyman S, Möttönen T, Hermann R et al. HLA-DR–DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis. Ann. Rheum. Dis.63, 1406–1412 (2004).
  • Tezenas du Montcel S, Michou L, Petit-Teixeira E et al. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum.52, 1063–1068 (2005).
  • Mattey DL, Dawes PT, Gonzalez-Gay MA et al. HLA-DRB1 alleles encoding aspartic acid at position 70 protect against the development of rheumatoid arthritis. J. Rheumatol.28, 232–239 (2001).
  • Marsh SGE, Albert ED, Bodmer WF et al. Nomenclature for the factors of the HLA system, 2004. Int. J. Immunogen.32, 107–159 (2005).
  • Robinson J, Malik A, Parham P et al. IMGT/HLA database – sequence database for the human major histocompatibility complex. Tissue Antigens55, 280–287 (2000).
  • Quan L, Thiele GM, Tian J et al. The development of novel therapies for rheumatoid arthritis. Expert Opin. Ther. Pat.18, 723–738 (2008).
  • Ruderman EM, Pope RM. The evolving clinical profile of abatacept: a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res. Ther.7(Suppl. 2), S21–S25, (2005).
  • Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med.298, 869–871 (1978).
  • Rueda B, Fernandez-Gutierrez B, Baba A et al. Investigation of CD69 as a new candidate gene for rheumatoid arthritis. Tissue Antigens72, 206–210 (2008).
  • Margetic S, Topic E, Ruzic DF et al. Soluble transferrin receptor and transferrin receptor-ferritin index in iron deficinecy anemia and anemia in rheumatoid arthritis. Clin. Chem. Lab. Med.43, 326–331 (2005).
  • Brennan FM, Hayes AL, Ciesielski CJ et al. Evidence that rheumatoid arthritis synovial T-cells are similar to cytokine-activated T-cells: involvement of phosphatidylinositol 3-kinase and nuclear factor κB pathways in tumor necrosis factor a production in rheumatoid arthritis. Arthritis Rheum.46, 31–41 (2002).
  • Sebbag M, Parry SL, Brennan FM, Feldman M. Cytokine stimulation of T lymphocytes regulates their capacity to induce monocyte production of tumor necrosis factor-α, but not interleukin-10: possible relevance to pathophysiology of rheumatoid arthritis. Eur. J. Immunol.27, 624–632 (1997).
  • McInnes IB, Leung BP, Sturrock RD et al. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat. Med.3, 189–195 (1997).
  • Andersson AK, Li C, Brennan FM. Recent developments in the immunobiology of rheumatoid arthritis. Arthritis Res. Ther.10, 204–213 (2008).
  • Hwang SY, Kim JY, Kim KW et al. IL-17 induces production of IL-6 and IL-8 in RA synovial fibroblasts via NF-kB and PI3 kinase/Akt dependent pathways. Arthritis Res. Ther.2, 61–68 (2004).
  • Huang SH, Frydas S, Kempuraj D et al. Interleukin-17 and the interluekin-17 family member network. Allergy Asthma Proc.25, 17–21 (2004).
  • Firestein GS, Yeo M, Zvaifler NJ. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest.96, 1631–1638 (1995).
  • Raza K, Scheel-Toellner D, Lee CY. Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res. Ther.8, R120 (2006).
  • Leipe J, Shapenko A, Lipsky PE et al. Regulatory T cells in rheumatoid arthritis. Arthritis Res. Ther.7, 93–101 (2005).
  • Krivosikova H, Dallos T, Maslinski W et al. B cell activating factor, its role in autoimmunity, and targeting in autoimmune diseases. Bratisl. Lek. Listy110, 137–145 (2009).
  • Mewar D, Wilson AG. Autoantibodies in rheumatoid arthritis: a review. Biomed. Pharmacother.60, 648–655 (2006).
  • Schellekens GA, Visser H, de Jong BA et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum.43, 155–163 (2000).
  • Hoffman IE, Peene I, Cebecauer L. Presence of rheumatoid factor and antibodies to citrullinated peptides in systemic lupus erythematosus 64. Ann. Rheum. Dis.330–332 (2005).
  • van der Helm-van Mil AHM, Verpoort KN, Breedveid FC. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther.7, R949–R958 (2005).
  • Shiozawa S, Hayashi S, Tsukamoto Y et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int. Immunol.10, 1891–1895 (1998).
  • Jawaheer D, Seldin MF, Amos CI et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with autoimmune diseases. Am. J. Hum. Genet.68, 927–936 (2001).
  • MacKay K, Eyre S, Myerscough A et al. Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the UK. Arthritis Rheum.46, 632–639 (2002).
  • Eyre S, Barton A, Shephard N et al. Investigation of susceptibility loci identified in the UK rheumatoid arthritis whole-genome scan in a further series of 217 UK affected sibling pairs. Arthritis Rheum.50, 729–735 (2004).
  • Osorio YFJ, Bukulmez H, Petit-Teixeira E et al. Dense genome-wide linkage analysis of rheumatoid arthritis, including covariates. Arthritis Rheum.50, 2757–2765 (2004).
  • Tamiya G, Shinya M, Imanishi T et al. Whole genome association study of rheumatoid arthritis using 27039 microsatellites. Hum. Mol. Genet.14, 2305–2321 (2005).
  • Jawaheer D, Seldin MF, Amos CI et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum.48, 906–916 (2003).
  • Bottini N, Musumeci L, Alonso A. A functional variant of lymphoid tyrosine phosphatase is associated with Type 1 diabetes. Nat. Genet.36, 337–338 (2004).
  • Gregersen PK. Gaining insight into PTPN22 and autoimmunity. Nat. Genet.37, 1300–1302 (2005).
  • Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet.75, 504–507 (2004).
  • Wu H, Cantor RM, Graham DS et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum.52, 2396–2402 (2005).
  • Reddy MV, Johansson M, Sturfelt G et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun.6, 658–662 (2005).
  • Viken MK, Amundsen SS, Kvien TK et al. Association analysis of the 1858 C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun.6, 271–273 (2005).
  • Smyth D, Cooper JD, Collins JE et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with Type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes53, 3020–3023 (2004).
  • Velaga MR, Wilson V, Jennings CE et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. Endocrinol. Metab.89, 5862–5865 (2004).
  • Canton I, Akhtar S, Gavalas NG et al. A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun.6, 584–587 (2005).
  • Matesanz F, Rueda B, Orozco G et al. Protein tyrosine phosphatase gene (PTPN22) polymorphism in multiple sclerosis. J. Neurol.252, 94–95 (2005).
  • Rueda B, Nunez C, Orozco G et al. C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum. Immunol.66, 848–852 (2005).
  • Martin MC, Oliver J, Urcelay E et al. The functional genetic variation in the PTPN22 gene has a negligible effect on the susceptibility to develop inflammatory bowel disease. Tissue Antigens66, 314–317 (2005).
  • Kochi Y, Suzuki A, Yamada R, Yamamoto K. Genetics of rheumatoid arthritis: underlying evidence of ethnic differences. J. Autoimmunol.32, 158–162 (2009).
  • Vang T, Congia M, Macis MD, Musumeci L et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37, 1317–1319 (2005).
  • Lee AT, Li W, Liew A et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun.6, 129–133 (2005).
  • Suppiah V, Doherty CO, Heggarty S et al. The CTLA4+49AG and CT60 polymorphisms and chronic inflammatory arthropathies in Northern-Ireland. Experiment Mol. Path.80, 141–146 (2006).
  • Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat. Rev. Immunol.2, 116–126 (2002).
  • Donner H, Braun J, Seidl C et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto thyroiditis and Addison’s disease. J. Clin. Endocrinol. Metab.82, 4130–4132 (1997).
  • Heward JM, Allahabadia A, Armitage M et al. The development of Graves’ disease and the CTLA-4 gene on chromosome 2q33. J. Clin. Endocrinol. Metab.84, 2398–2401 (1999).
  • Yanagawa T, Gomi K, Nakao EI, Inada S. CTLA-4 gene polymorphism in Japanese patients with rheumatoid arthritis. J. Rheumatol.27, 2740–2742 (2000).
  • Vaidya B, Pearce SH, Charlton S et al. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford)41, 180–183 (2002).
  • Seidl C, Donner H, Fischer B et al. CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens61, 62–66 (1998).
  • Lee YH, Choi SJ, Ji JD, Song GG. No association of polymorphisms of the CTLA-4 exon 1 (+49) and promoter (-318) genes with rheumatoid arthritis in the Korean population. Scand. J. Rheumatol.31, 266–270 (2002).
  • Gonzalez-Escribano MF, Rodriguez R, Valenzuela A, Garcia A. CTLA4 polymorphisms in Spanish patients with rheumatoid arthritis. Tissue Antigens53, 296–300 (1999).
  • Gandjbakhch F, Fajardy I, Ferré B et al. Functional haplotype of PADI4 gene in rheumatoid arthritis: positive correlation in a French population. J. Rheumatol.36, 881–886 (2009).
  • Panayi GS. B cells: a fundamental role in the pathogenesis of rheumatoid arthritis? Rheumatology (Oxford)44(Suppl. 2), ii3–ii7 (2005).
  • Nielen MM, van Schaardenburg D, Reesink HB et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum.50, 380–386 (2004).
  • Rantapaa-Dahlqvist S, de Jong BA, Berglin E et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid arthritis. Arthritis Rheum.48, 2741–2749 (2003).
  • Suzuki A, Yamada R, Chang X et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet.34, 395–402 (2003).
  • Barton A, Bowes J, Eyre S et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum.50, 1117–1121 (2004).
  • Harney SM, Meisel C, Sims AM et al. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology (Oxford)44, 869–872 (2005).
  • Caponi L, Petit-Teixeira E, Sebbag M et al. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann. Rheum. Dis.64, 587–593 (2005).
  • Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol.3, 791–800 (2003).
  • Mikulowska A, Metz CN, Bucala R et al. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type II-induced arthritis in mice. J. Immunol.158, 5514–5517 (1997).
  • Cornelis F, Faure S, Martinez M et al. New susceptibility locus from rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl Acad. Sci. USA95, 10746–10750 (1998).
  • Shiozawa S, Hayashi S, Tsukamoto Y et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int. Immunol.10, 1891–1895 (1998).
  • Morita C, Horiuchi T, Tsukamoto H et al. Association of tumor necrosis factor receptor type II polymorphism 196R with systemic lupus erythematosus in the Japanese: molecular and functional analysis. Arthritis Rheum.44, 2819–2827
  • Shibue T, Tsuchiya N, Komata T et al. Tumor necrosis factor α 5´FIN-flanking region, tumor necrosis factor receptor II, and HLA-DRB1 polymorphisms in Japanese patients with rheumatoid arthritis. Arthritis Rheum.43, 753–757 (2000).
  • Bayley JP, Bakker AM, Kaijzel EL et al. Association of polymorphisms of the tumor necrosis factor receptors I and II and rheumatoid arthritis. Rheumatology (Oxford)42, 969–971 (2003).
  • Rioux JD, Daly MJ, Silverberg MS et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat. Genet.29, 223–228 (2001).
  • Dieude P, Cornelis F. Genetic basis of rheumatoid arthritis. Joint Bone Spine72, 520–526 (2005).
  • Zhou SF, Di YM, Chan E et al. Clinical pharmacogenomics and potential application in personalized medicine. Curr. Drug Metab.9, 738–784 (2008).
  • Kooloos WM, Huizinga TW, Guchelaar HJ et al. Pharmacogenetics in treatment of rheumatoid arthritis. Curr. Pharm. Des.2, 164–165 (2010).
  • Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med.57, 119–137 (2006).
  • Kremer JM, Phelps CT. Long-term perspective study of the use of methotrexate in the treatment of rheumatoid arthritis. Update after a mean of 90mo. Arthritis Rheum.35, 138–145 (1992).
  • Braun J, Rau R. An update on methotrexate. Curr. Opin. Rheumatol.3, 216–223 (2009).
  • Hooijberg JH, Broxterman HJ, Kool M et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res.59, 2532–2535 (1999).
  • Gallivan J. Evidence for the cytotoxic activity of polyglutamate derivatives of methotrexate. Mol. Pharm.17, 105–110 (1980).
  • van Ede AE, Laan RF, Blom HJ et al. Methotrexate in rheumatoid arthritis: an update with focus on mechanisms involved in toxicity. Sem. Arth. Rheum.27, 277–292 (1998).
  • Szeto D, Cheng YC, Rosowsky A et al. Human thymydilate synthetase – III. Effects of methotrexate and folate analogs. Biochem. Pharmacol.28, 2633–2637 (1979).
  • Rothem L, Aronheim A, Assaraf YG Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J. Biol. Chem.278, 8935–8941 (2003).
  • Rothem L, Stark M, Kaufman Y et al. Reduced folate carrier gene silencing in multiple folate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. J. Biol. Chem.279, 374–384 (2004).
  • Whetstine JR, Witt TL, Matherly LH. The human reduced folate carrier gene is regulated by the AP2n and sp1 transcription factor families and a functional 61-bp polymorphism. J. Biol. Chem.277, 43873–43880 (2002).
  • Dervieux T, Lein DO, Park G et al. Single nucleotide polymorphisms in the folate/purine synthesis pathway predict methotrexate’s effects in rheumatoid arthritis. Arthritis Rheum.48(Suppl. 9), S438 (2003).
  • Hoffmeyer S, Burk O, von Richter O et al. Functional polymorphisms of the human multiresistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo.Proc. Natl Acad. Sci. USA97, 3473–3478 (2000).
  • Norris MD, de Graaf D, Haber M et al. Involvement of MDR1 P-glycoprotein in mutifactorial resistance to methotrexate. Int. J. Cancer65, 613–619 (1996).
  • Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in MTHFR. Nat. Genet.10, 111–113 (1995).
  • van der Put NM, Gabreels F, Stevens EM et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural tube defects? Am. J. Hum. Genet.62, 1044–1051 (1998).
  • Haagsma CJ, Blom HJ, van Riel PL et al. Influence of sulphasalazine, methotrexate, and the combination of both on plasma homocysteine concentration in patients with rheumatoid arthritis. Ann. Rheum. Dis.58, 79–84 (1999).
  • Horie N, Aiba H, Oguro K et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5-terminal regulatory region of the human gene for thymidilate synthase. Cell Struct. Funct.20, 191–197 (1995).
  • diPaolo A, Chu E. The role of thymidilate synthase as a molecular biomarker. Clin. Cancer Res.10, 411–412 (2004).
  • Banerjee D, Mayer-Kuckuk P, Capiaux G et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidilate synthase. Biochim. Biophys. Acta1587, 164–173 (2002).
  • Chan ES, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res.4, 266–273 (2002).
  • Deriveux T, Furst D, Lein DO et al. Polyglutamation of methotrexate with common polymorphism in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase and thymidilate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum.50, 2766–2774 (2004).
  • Perry CA, Renna SA, Khitun E et al. Ethnicity and race influence the folate status response to controlled folate intakes in young women. Nutrition134, 1786–1792 (2004).
  • Lamason RL, Mohideen MA, Mest JR et al. SLC24A5 a putative cation exchanger affects pigmentation in zebrafish and humans. Science310, 1782–1786 (2005).
  • Ranganathan P. Pharmacogenomics in rheumatoid arthritis. In: Methods in Molecular Biology. Yan Q (Ed.). Humana Press, NJ, USA 413–435 (2004).
  • Stolk JN, Boerbooms AM, de Abreu RA et al. Reduced thiopurine methyltransferase activity and development of side effects of azathioprine treatment in patients with rheumatoid arthritis. Arthritis Rheum.41, 1858–1866 (1998).
  • Tai HL, Krynetski EZ, Yates CR et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet.58, 694–702 (1996).
  • Tai HL, Krynetski EY, Schuetz EG et al. Enhanced proteolysis of TPMT encoded by mutant alleles in humans (TPMT*3A, TPMT*2) mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl Acad. Sci. USA94, 6444–6449 (1997).
  • Yates CR, Krynetski EY, Loennechen T et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Int. Med.126, 608–614 (1997).
  • Krynetski EY, Tai HL, Yates CR et al. Genetic polymorphism of thiopurine S-methyltranferase: clinical importance and molecular mechanisms. Pharmacogenetics6, 279–290 (1996).
  • Tai HL, Krynetski EY, Yates CR et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am. J. Hum. Genet.58, 694–702 (1996).
  • Tai HL, Krynetski EY, Schuetz EG et al. Enhanced proteolysis of TPMT encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc. Natl Acad. Sci. USA94, 6444–6449 (1997).
  • Yates CR, Krynetski EY, Loennechen T et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Int. Med.126, 608–614 (1997).
  • Ameyaw MM, Collie-Duguid ES, Powrie RH et al. Thiopurine-methyltransferase alleles in British and Ghanaian population. Hum. Mol. Genet.8, 367–370 (1999).
  • Das KM, Eastwood MA, McManus JP, Sircus W. Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N. Engl. J. Med.289, 491–495 (1973).
  • Pullar T, Capell HA. Variables affecting efficacy and toxicity of sulphasalazine in rheumatoid arthritis: a review. Drugs32(Suppl. 1), 54–57 (1986).
  • Tanaka E, Taniguchi A, Urano W et al. Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at NAT2 gene. J. Rheumat.29, 2492–2499 (2002).
  • Wadelius M, Stjernberg E, Wilholm BE, Rane A. Polymorphisms of NAT2 in relation to sulfasalazine-induced agranulocytosis. Pharmacogenetics10, 35–41 (2000).
  • Genovese MC, Bathon JM, Martin RW et al. Etanercept versus methotrexate in patients with early rheumatoid arthritis: two year radiographic and clinical outcomes. Arthritis Rheum.46, 1443–1450 (2002).
  • Greenberg JD, Ostrer H. The promise of pharmacogenetics to TNF antagonists in rheumatoid arthritis. Bull. NYU Hosp. Joint Dis.65, 139–142 (2004).
  • Liu C, Batliwalla F, Li et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol. Med.10, 575–581 (2008).
  • Luzi G, Laganà B, Salemi S, Di Rosa R. Are glucocorticoids a consistent risk factor for infections in rheumatoid arthritis patients under treatment with methotrexate and etanercept? Clin. Ther.160, 121–123 (2009).
  • Lamprecht P, Nitschmann S. Therapy of rheumatoid arthritis with etanercept. Internist (Berl).50, 633–634 (2009).
  • Jiménez-Puya R, Gómez-García F, Amorrich-Campos V, Moreno-Giménez JC. Etanercept: efficacy and safety. J. Eur. Acad. Dermatol. Venereol.23, 402–405 (2009).
  • Furst DE. The risk of infections with biologic therapies for rheumatoid arthritis. Semin. Arthritis Rheum.39(5), 327–346 (2008).
  • Kremer JM. Etanercept for patients with RA: more is not always better. Nat. Clin. Pract. Rheumatol.5, 10–11 (2008).
  • Zintzaras E, Dahabreh IJ, Giannouli S et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis: a systematic review and meta-analysis of dosage regimens. Clin. Ther.30, 1939–1955 (2008).
  • Lecluse LL, Piskin G, Mekkes JR et al. Review and expert opinion on prevention and treatment of infliximab-related infusion reactions. Br. J. Dermatol.159, 527–36 (2008).
  • Du Pan SM, Gabay C, Finckh A. A systematic review of infliximab in the treatment of early rheumatoid arthritis. Ther. Clin. Risk Manag.3, 905–911 (2007).
  • van Vollenhoven RF, Klareskog L. Infliximab dosage and infusion frequency in clinical practice: experiences in the Stockholm biologics registry STURE. Scand. J. Rheumatol.36, 418–423 (2007).
  • Onrust SV, Lamb HM. Infliximab: a review of its use in Crohn’s disease and rheumatoid arthritis. BioDrugs10, 397–422 (2008).
  • Szekanecz Z. Adalimumab in advanced and early rheumatoid arthritis. Orv. Hetil.150, 1333–1334 (2009).
  • Fehér J, Lengyel G. The effectivity and safety of the biological therapy with adalimumab. Orv. Hetil.150, 1215–1222 (2009).
  • Khraishi M. Comparative overview of safety of the biologics in rheumatoid arthritis. J. Rheumatol. Suppl.82, 25–32 (2009).
  • Lozeron P, Denier C, Lacroix C, Adams D. Long-term course of demyelinating neuropathies occurring during tumor necrosis factor-α-blocker therapy. Arch. Neurol.66, 490–497 (2009).
  • Allen RD. Polymorphism of the human TNF-α promotet-random variation or functional diversity? Mol. Immunol.36, 1017–1027 (1999).
  • Udalova IA, Nedospasov SA, Webb GC et al. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics16, 180–186 (1993).
  • Morita C, Horiuchi T, Tsukamoto H et al. Association of tumour necrosis factor receptor type II polymorphism 196R with systemic lupus erythematosus in the Japanese: molecular and functional analysis. Arthritis Rheum.44, 2819–2827 (2001).
  • Santee SM, Owen-Schaub LB. Human tumour necrosis factor receptor p75/80 gene structure and promoter characterization. J. Biol. Chem.271, 21151–21159 (1996).
  • Mugnier B, Balandraud N, Darque A et al. Polymorphism at position -308 of the tumor necrosis factor a gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum.48, 1849–1852 (2003).
  • Fabris M, Tolusso B, Di Poi E et al. Tumor necrosis α receptor II polymorphism in patients from Southern Europe with mild-moderate and severe rheumatoid arthritis. J. Rheumat.29, 1847–1850 (2002).
  • Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum.30, 1205–1213 (1987).
  • Mulcahy B, Waldron-Lynch F, McDermott MF et al. Genetic variability in the tumor necrosis factor–lymphotoxin region influences susceptibility to rheumatoid arthritis. Am. J. Hum. Genet.59, 676–683 (1996).
  • Ranganathan P, MacLeod HL Methotrexate pharmacogenetics. Arthritis Rheum.54, 1366–1377 (2006).
  • Bridges SL. Personalized medicine in rheumatoid arthritis. Bull. NYU Hosp. Joint Dis.65, 174–177 (2007).
  • Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature429, 464–468 (2004).
  • Xu B, Arlehag L, Rantapää-Dahlquist SB et al. β2-adrenergic receptor gene single-nucleotide polymorphisms are associated with rheumatoid arthritis in northern Sweden. Scand. J. Rheumatol.33, 395–398 (2004).
  • Orozco G, Alizadeh BZ, Delgado-Vega AM et al. Association of STAT4 with rheumatoid arthritis: a replication study in three European populations. Arthritis Rheum.58, 1974–1980 (2008).
  • Walker EJ, Hirschfield GM, Xu C et al.CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population. Arthritis Rheum.60, 931–937 (2009).
  • Stark K, Rovenský J, Blazicková S et al. Association of common polymorphisms in known susceptibility genes with rheumatoid arthritis in a Slovak population using osteoarthritis patients as controls. Arthritis Res. Ther.15, R70 (2009).
  • Nordang GB, Viken MK, Hollis-Moffatt JE et al. Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford)48, 367–370 (2009).
  • Swanberg M, Lidman O, Padyukov L et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction Nat. Genet.37, 486–94 (2005).
  • Gandjbakhch F, Fajardy I, Ferré B et al. A functional haplotype of PADI4 gene in rheumatoid arthritis: positive correlation in a French population. J. Rheumatol.36, 881–886 (2009).
  • Hinks A, Eyre S, Barton A et al. Investigation of genetic variation across the protein tyrosine phosphatase gene in patients with rheumatoid arthritis in the UK. Ann. Rheum. Dis.66, 683–686 (2007).
  • Carlton VE, Hu X, Chokkalingam AP et al.PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis Am. J. Hum. Genet.77, 567–581 (2007).
  • Wesoly J, Toes REM, Slagboom PE, Huizinga TWJ. RUNX1 intronic SNP is not associated with rheumatoid arthritis susceptibility in Dutch Caucasians. Rheumatology44, 1196 (2005).
  • Tokuhiro S, Yamada R, Chang X et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genetics35, 341–348 (2003).
  • Zervou MI, Sidiropoulos P, Petraki E et al. Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum. Immunol.69, 567–571 (2008).
  • Palomino-Morales RJ, Rojas-Villarraga A, González CI et al. STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun.9, 379–382 (2008).
  • Kobayashi S, Ikari K, Kaneko H et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum.58, 1940–1946 (2008).
  • Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus N. Engl. J. Med.357, 2517–2518 (2007).
  • Lee HS, Remmers EF, Le JM et al. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol. Med.13, 455–460 (2007).
  • Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J et al. Tumor necrosis factor-α is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. Hum. Immunol.70, 251–256 (2009).
  • Nemec P, Pavkova-Goldbergova M et al. Polymorphism in the tumor necrosis factor-α gene promoter is associated with severity of rheumatoid arthritis in the Czech population. Clin. Rheumatol.27, 59–65 (2008).
  • Costenbader KH, Chang SC, De Vivo I et al. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene–environment interactions with heavy cigarette smoking Arthritis Res. Ther.10, R52 (2008).
  • Wesoly J, Hu X, Thabet MM et al. The 620W allele is the PTPN22 genetic variant conferring susceptibility to RA in a Dutch population. Rheumatology (Oxford)46, 617–621 (2007).
  • Seldin MF, Shigeta R, Laiho K et al. Finnish case–control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun.6, 720–722 (2005).
  • Farago B, Tallian GC, Komlosi K et al. Protein tyrosine phosphatase gene C1858T allele confers risk for rheumatoid arthritis in Hungarian subjects. Rheumatol. Int.29, 793–796 (2009).
  • Ikari K, Momohara S, Inoue S et al. Haplotype analysis revealed no association between the PTPN22 gene and RA in a Japanese population Rheumatology45, 1345–1348 (2005).
  • Viken MK, Olsson M, Flåm ST et al. The PTPN22 promoter polymorphism – 1123G>C association cannot be distinguished from the 1858C>T association in a Norwegian rheumatoid arthritis material. Tissue Antigens70, 190–197 (2007).
  • Majorczyk E, Jasek M, P?oski R et al. Association of PTPN22 single nucleotide polymorphism with rheumatoid arthritis but not with allergic asthma. Eur. J. Hum. Genet.15, 1043–1048 (2007).
  • Orozco G, Pascual-Salcedo D, López-Nevot MA et al. Auto-antibodies, HLA and PTPN22: susceptibility markers for rheumatoid arthritis. Rheumatology (Oxford)47, 138–141 (2008).
  • Mastana S, Gilmour A, Ghelani A et al. Association of PTPN22 with rheumatoid arthritis among South Asians in the UK. J. Rheumatol.34, 1984–1986 (2007).
  • Chabchoub G, Teixiera EP, Maalej A et al. The R620W polymorphism of the protein tyrosine phosphatase 22 gene in autoimmune thyroid diseases and rheumatoid arthritis in the Tunisian population. Ann. Hum. Biol.36, 342–349 (2009).
  • Steer S, Lad B, Grumley JA et al. Association of R602W in a protein tyrosine phosphatase gene with a high risk of rheumatoid arthritis in a British population: evidence for an early onset/disease severity effect. Arthritis Rheum.52, 358–360 (2005).
  • Ghodke Y, Chopra A, Joshi K, Patwardhan B. Are thymidylate synthase and methylene tetrahydrofolate reductase genes linked with methotrexate response (efficacy, toxicity) in Indian (Asian) rheumatoid arthritis patients? Clin. Rheumatol.27, 787–789 (2008).
  • Inoue S, Hashiguchi M, Chiyoda T et al. Pharmacogenetic study of methylenetetrahydrofolate reductase and thymidylate synthase in Japanese and assessment of ethnic and gender differences. Pharmacogenomics8, 41–47 (2007).
  • Kumagai K, Hiyama K, Oyama T et al. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int. J. Mol. Med.11, 593–600 (2003).
  • Whetstine JR, Witt TL, Matherly LH. The human reduced folate carrier gene is regulated by the AP2 and sp1 transcription factor families and a functional 61-base pair polymorphism. J. Biol. Chem.277, 43873–43880 (2002).
  • Whetstine JR, Gifford AJ, Witt T et al. Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin. Cancer Res.7, 3416–3422 (2001).
  • Patiño-García A, Zalacaín M, Marrodán L et al. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J. Pediatr.154, 688–693 (2009).
  • Shimasaki N, Mori T, Torii C et al. Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. J. Pediatr. Hematol. Oncol.30, 347–352 (2008).
  • Bohanec Grabar P, Logar D, Lestan B, Dolzan V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur. J. Clin. Pharmacol.64, 1057–1068 (2008).
  • Takatori R, Takahashi KA, Tokunaga D et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin. Exp. Rheumatol.24, 546–554 (2006).
  • Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, Gawronska-Szklarz B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int. J. Clin. Pharmacol. Ther.42, 496–503 (2004).
  • Wessels JA, de Vries-Bouwstra JK, Heijmans BT et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum.54, 1087–1095 (2006).
  • Urano W, Furuya T, Inoue E et al. Associations between methotrexate treatment and methylenetetrahydrofolate reductase gene polymorphisms with incident fractures in Japanese female rheumatoid arthritis patients. J. Bone Miner. Metab.27(5), 574–583 (2009).
  • Kurzawski M, Pawlik A, Safranow K et al. 677C>T and 1298A>C MTHFR polymorphisms affect methotrexate treatment outcome in rheumatoid arthritis Pharmacogenomics8, 1551–1559 (2007).
  • Ghodke Y, Chopra A, Joshi K, Patwardhan B. Are thymidylate synthase and methylene tetrahydrofolate reductase genes linked with methotrexate response (efficacy, toxicity) in Indian (Asian) rheumatoid arthritis patients? Clin. Rheumatol.27, 787–789 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.