75
Views
19
CrossRef citations to date
0
Altmetric
Review

Application of molecular diagnostics for the detection of Lynch syndrome

&
Pages 651-665 | Published online: 09 Jan 2014

References

  • Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet. Med.11(1), 35–41 (2009).
  • Teutsch SM, Bradley LA, Palomaki GE et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet. Med.11(1), 3–14 (2009).
  • Vasen HF, Wijnen JT, Menko FH et al. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology110(4), 1020–1027 (1996).
  • Watson P, Lynch HT. Cancer risk in mismatch repair gene mutation carriers. Fam. Cancer1(1), 57–60 (2001).
  • Hampel H, Stephens JA, Pukkala E et al. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology129(2), 415–421 (2005).
  • Vasen HF, Möslein G, Alonso A et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J. Med. Genet.44(6), 353–362 (2007).
  • Kastrinos F, Stoffel EM, Balmaña J, Steyerberg EW, Mercado R, Syngal S. Phenotype comparison of MLH1 and MSH2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States. Cancer Epidemiol. Biomarkers Prev.17(9), 2044–2051 (2008).
  • Stoffel E, Mukherjee B, Raymond VM et al. Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology137(5), 1621–1627 (2009).
  • Baglietto L, Lindor NM, Dowty JG et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J. Natl Cancer Inst.102(3), 193–201 (2010).
  • Senter L, Clendenning M, Sotamaa K et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology135(2), 419–428 (2008).
  • Park YJ, Shin KH, Park JG. Risk of gastric cancer in hereditary nonpolyposis colorectal cancer in Korea. Clin. Cancer Res.6(9), 2994–2998 (2000).
  • Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet. Med.11(1), 42–65 (2009).
  • Liu HX, Zhou XL, Liu T et al. The role of hMLH3 in familial colorectal cancer. Cancer Res.63(9), 1894–1899 (2003).
  • Wu Y, Berends MJ, Post JG et al. Germline mutations of EXO1 gene in patients with hereditary nonpolyposis colorectal cancer (HNPCC) and atypical HNPCC forms. Gastroenterology120(7), 1580–1587 (2001).
  • Järvinen HJ, Aarnio M, Mustonen H et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology118(5), 829–834 (2000).
  • Lynch HT. Cancer and the family history trail. NY State J. Med.91, 145–147 (1991).
  • Loukola A, Eklin K, Laiho P et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res.61, 4545–4549 (2001).
  • Müller W, Burgart LJ, Krause-Paulus R et al. The reliability of immunohistochemistry as a prescreening method for the diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) – results of an international collaborative study. Fam. Cancer1, 87–93 (2001).
  • Warthin A. Hereditary with reference to carcinoma. Arch. Intern. Med.12, 546–555 (1913).
  • Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large midwestern kindreds. Arch. Intern. Med.117, 206–212 (1966).
  • Vasen HF, Mecklin JP, Khan PM, Lynch HT. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis. Colon Rectum34(5), 424–425 (1991).
  • Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology116(6), 1453–1456 (1999).
  • Lindor NM, Rabe K, Petersen GM et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: Familial colorectal cancer type X. JAMA293(16), 1979–1985 (2005).
  • Llor X, Pons E, Xicola RM et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin. Cancer Res.11(20), 7304–7310 (2005).
  • Barnetson RA, Tenesa A, Farrington SM et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med.354, 2751–2763 (2006).
  • Hampel H, Frankel WL, Martin E et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med.352(18), 1851–1860 (2005).
  • Casey G, Lindor NM, Papadopoulos N et al. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA293(7), 799–809 (2005).
  • Rodriguez-Bigas MA, Boland CR, Hamilton SR et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J. Natl Cancer Inst.89(23), 1758–1762 (1997).
  • Umar A, Boland CR, Terdiman JP et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl Cancer Inst.96(4), 261–268 (2004).
  • Bonis PA, Trikalinos TA, Chung M et al. Hereditary nonpolyposis colorectal cancer: diagnostic strategies and their implications. Evid. Rep. Technol. Assess. (Full Rep.)(150), 1–180 (2007).
  • Prolla TA, Pang Q, Alani E, Kolodner RD, Liskay RM. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science265, 1091–1093 (1994).
  • Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science266, 1403–1405 (1994).
  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLa in human mismatch repair. Cell126(2), 297–308 (2006).
  • Markowitz S, Wang J, Myeroff L et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science268(5215), 1336–1338 (1995).
  • Rampino N, Yamamoto H, Ionov Y et al. Somatic frameshift mutations in the Bax gene in colon cancers of the microsatellite mutator phenotype. Science275(5302), 967–969 (1997).
  • Boland CR, Thibodeau SN, Hamilton SR et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58(22), 5248–5257 (1998).
  • Perucho M. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58: 5248–5257, 1998. Cancer Res.59(1), 249–256 (1999).
  • Nash GM, Gimbel M, Shia J et al. Automated, multiplex assay for high-frequency microsatellite instability in colorectal cancer. J. Clin. Oncol.21(16), 3105–3112 (2003).
  • Samowitz WS, Slattery ML, Potter JD, Leppert MF. BAT-26 and BAT-40 instability in colorectal adenomas and carcinomas and germline polymorphisms. Am. J. Pathol.154(6), 1637–1641 (1999).
  • Pyatt R, Chadwick RB, Johnson CK, et al. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing. Am. J. Pathol.155(2), 349–353 (1999).
  • Suraweera N, Duval A, Reperant M et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology123(6), 1804–1811 (2002).
  • Murphy KM, Zhang S, Geiger T et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn.8(3), 305–311 (2006).
  • Bacher JW, Flanagan LA, Smalley RL et al. Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis. Markers20(4–5), 237–250 (2004).
  • Xicola RM, Llor X, Pons E et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J. Natl Cancer Inst.99(3), 244–252 (2007).
  • Malesci A, Laghi L, Bianchi P et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin. Cancer Res.13(13), 3831–3839 (2007).
  • Hatch SB, Lightfoot HM, Garwacki CP et al. Microsatellite instability testing in colorectal carcinoma: choice of markers affects sensitivity of detection of mismatch repair-deficient tumors. Clin. Cancer Res.11(6), 2180–2187 (2005).
  • Laghi L, Bianchi P, Malesci A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene27(49), 6313–6321 (2008).
  • Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev.23(1–2), 29–39 (2004).
  • Deng G, Bell I, Crawley S et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res.10(1), 191–195 (2004).
  • Domingo E, Niessen RC, Oliveira C et al. BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene24(24), 3995–3998 (2005).
  • Hendriks YM, Wagner A, Morreau H et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology127(1), 17–25 (2004).
  • Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: part I. The utility of immunohistochemistry. J. Mol. Diagn.10(4), 293–300 (2008).
  • Raevaara TE, Vaccaro C, Abdel-Rahman WM et al. Pathogenicity of the hereditary colorectal cancer mutation hMLH1 del616 linked to shortage of the functional protein. Gastroenterology125, 501–509 (2003).
  • Salahshor S, Koelble K, Rubio C et al. Microsatellite instability and hMLH1 and hMSH2 expression analysis in familial and sporadic colorectal cancer. Lab. Invest.81, 535–541 (2001).
  • Wahlberg SS, Schmeits J, Thomas G et al. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res.62, 3485–3492 (2002).
  • De Jong AE, Van Puijenbroek M, Hendriks Y et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin. Cancer Res.10(3), 972–980 (2004).
  • Acharya S, Wilson T, Gradia S et al. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl Acad. Sci. USA93(24), 13629–13634 (1996).
  • Marsischky GT, Filosi N, Kane MF, Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev.10, 407–420 (1999).
  • Chang CL, Marra G, Chauhan DP et al. Oxidative stress inactivates the human DNA mismatch repair system. Am. J. Physiol. Cell Physiol.283(1), C148–154 (2002).
  • Bindra RS, Crosby ME, Glazer PM. Regulation of DNA repair in hypoxic cancer cells. Cancer Metastasis Rev.26, 249–260 (2007).
  • Watson N, Grieu F, Morris M et al. Heterogeneous staining for mismatch repair proteins during population-based prescreening for hereditary nonpolyposis colorectal cancer. J. Mol. Diagn.9, 472–478 (2007).
  • Hampel H, Frankel WL, Martin E et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol.26, 5783–5788 (2008).
  • Lindor NM, Burgart LJ, Leontovich O et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J. Clin. Oncol.20(4), 1043–1048 (2002).
  • Pinol V, Castells A, Andreu M et al. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA293(16), 1986–1994 (2005).
  • Lagerstedt Robinson K, Liu T, Vandrovcova J et al. Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J. Natl Cancer Inst.99(4), 291–299 (2007).
  • Halvarsson B, Lindblom A, Johansson L, Lagerstedt K, Nilbert M. Loss of mismatch repair protein immunostaining in colorectal adenomas from patients with hereditary nonpolyposis colorectal cancer. Mod. Pathol.18, 1095–1101 (2005).
  • Pino MS, Mino-Kenudson M, Wildemore BM et al. Deficient DNA mismatch repair is common in Lynch syndrome-associated colorectal adenomas. J. Mol. Diagn.11(3), 238–247 (2009).
  • Ichikawa Y, Lemon S, Wang S et al. Microsatellite instability and expression of MLH1 and MSH2 in normal and malignant endometrial and ovarian epithelium in hereditary nonpolyposis colorectal cancer family members. Cancer Genet. Cytogenet.112(1), 2–8 (1999).
  • Risinger JI, Berchuck A, Kohler MF, Watson P, Lynch HT, Boyd J. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res.53(21), 5100–5103 (1993).
  • De Leeuw WJ, Dierssen J, Vasen HF et al. Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J. Pathol.192, 328–335 (2000).
  • Lim PC, Tester D, Cliby W et al. Absence of mutations in DNA mismatch repair genes in sporadic endometrial tumors with microsatellite instability. Clin.Cancer Res.2, 1907–1911 (1996).
  • Helland A, Børresen-Dale AL, Peltomäki P et al. Microsatellite instability in cervical and endometrial carcinomas. Int. J. Cancer70, 499–501 (1997).
  • Kobayashi K, Sagae S, Kudo R, Saito H, Koi S, Nakamura Y. Microsatellite instability in endometrial carcinomas: frequent replication errors in tumors of early onset and/or of poorly differentiated type. Genes Chromosomes Cancer14, 128–132 (1995).
  • Kihana T, Fujioka T, Hamada K et al. Association of replication error positive phenotype with lymphocyte infiltration in endometrial cancers. Jpn. J. Cancer Res.89, 895–902 (1998).
  • Catasus L, Machin P, Matias-Guiu X, Prat J. Microsatellite instability in endometrial carcinomas: clinicopathologic correlations in a series of 42 cases. Hum. Pathol.29, 1160–1164 (1998).
  • Sakamoto T, Murase T, Urushibata H et al. Microsatellite instability and somatic mutations in endometrial carcinomas. Gynecol. Oncol.71, 53–58 (1998).
  • Krajinovic M, Richer C, Gorska-Flipot I et al. Genomic loci susceptible to replication errors in cancer cells. Br. J. Cancer78, 981–985 (1998).
  • Parc YR, Halling KC, Burgart LJ et al. Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: associations with family history and histopathology. Int. J. Cancer86, 60–66 (2000).
  • Gurin CC, Federici MG, Kang L, Boyd J. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res.59, 462–466 (1999).
  • Tibiletti M, Furlan D, Taborelli M et al. Microsatellite instability in endometrial cancer: relation to histological subtypes. Gynecol. Oncol.73, 247–252 (1999).
  • Berends MJ, Wu Y, Sijmons RH et al. Toward new strategies to select young endometrial cancer patients for mismatch repair gene mutation analysis. J. Clin. Oncol.21, 4364–4370 (2003).
  • Geisler JP, Goodheart MJ, Sood AK et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer98, 2199–2206 (2003).
  • Sood AK, Holmes R, Hendrix MJ, Buller RE. Application of the National Cancer Institute international criteria for determination of microsatellite instability in ovarian cancer. Cancer Res.61, 4371–4374 (2001).
  • King BL, Carcangiu ML, Carter D. Microsatellite instability in ovarian neoplasms. Br. J. Cancer72, 376–382 (1995).
  • Fujita M, Enomoto T, Yoshino K et al. Microsatellite instability and alterations in the hMSH2 gene in human ovarian cancer. Int. J. Cancer64, 361–366 (1995).
  • Buller RE, Shahin MS, Holmes RW, Hatterman M, Kirby PA, Sood AK. p53 mutations and microsatellite instability in ovarian cancer: yin and yang. Am. J. Obstet. Gynecol.184, 891–902 (2001).
  • Malander S, Rambech E, Kristoffersson U et al. The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer. Gynecol. Oncol.101, 238–243 (2006).
  • Domanska K, Malander S, Masback A, Nilbert M. Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian cancer before age 40. Int. J. Gynecol. Cancer17, 789–793 (2007).
  • Rosen DG, Cai KQ, Luthra R, Liu J. Immunohistochemical staining of hMLH1 and hMSH2 reflects microsatellite instability status in ovarian carcinoma. Mod. Pathol.19, 1414–1420 (2006).
  • Gille JJ, Hogervorst FB, Pals G et al. Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br. J. Cancer87, 892–897 (2002).
  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res.30(12), e57 (2002).
  • Gylling A, Ridanpää M, Vierimaa O et al. Large genomic rearrangements and germline epimutations in Lynch syndrome. Int. J. Cancer124(10), 2333–2340 (2009).
  • Wijnen J, Van Der Klift H, Vasen H et al. MSH2 genomic deletions are a frequent cause of HNPCC. Nat. Genet.20, 326–328 (1998).
  • Charbonnier F, Olschwang S, Wang Q et al. MSH2 in contrast to MLH1 and MSH6 is frequently inactivated by exonic and promoter rearrangements in hereditary nonpolyposis colorectal cancer. Cancer Res.62, 848–853 (2002).
  • Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR. Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum. Mutat.22, 428–433 (2003).
  • Wagner A, Barrows A, Wijnen JT et al. Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am. J. Hum. Genet.72, 1088–1100 (2003).
  • Wang Y, Friedl W, Lamberti C et al. Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int. J. Cancer103, 636–641 (2003).
  • Baudhuin LM, Ferber MJ, Winters JL et al. Characterization of hMLH1 and hMSH2 gene dosage alterations in Lynch syndrome patients. Gastroenterology129, 846–854 (2005).
  • Desai DC, Lockman JC, Chadwick RB et al. Recurrent germline mutation in MSH2 arises frequently de novo. J. Med. Genet.37(9), 646–652 (2000).
  • Green J, O’Driscoll M, Barnes A et al. Impact of gender and parent of origin on the phenotypic expression of hereditary nonpolyposis colorectal cancer in a large newfoundland kindred with a common MSH2 mutation. Dis. Colon Rectum45(9), 1223–1232 (2002).
  • Nyström-Lahti M, Kristo P, Nicolaides NC et al. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat. Med.1, 1203–1206 (2005).
  • Foulkes WD, Thiffault I, Gruber SB et al. The founder mutation MSH2*1906G-->C is an important cause of hereditary nonpolyposis colorectal cancer in the Ashkenazi Jewish population. Am. J. Hum. Genet.71(6), 1395–1412 (2002).
  • Clendenning M, Baze ME, Sun S et al. Origins and prevalence of the American founder mutation of MSH2. Cancer Res.68(7), 2145–2153 (2008).
  • Ricciardone MD, Ozcelik T, Cevher B et al. Human MLH1 deficiency predisposes to hematological maligancy and neurofibromatosis type 1. Cancer Res.59(2), 290–293 (1999).
  • Wang Q, Lasset C, Desseigne F et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res.59(2), 294–297 (1999).
  • Gallinger S, Aronson M, Shayan K et al. Gastrointestinal cancers and neurofibromatosis type 1 features in children with a germline homozygous MLH1 mutation. Gastroenterology126(2), 576–585 (2004).
  • Krüger S, Kinzel M, Walldorf C et al. Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. Eur. J. Hum. Genet.16(1), 62–72 (2008).
  • Felton KE, Gilchrist DM, Andrew SE. Constitutive deficiency in DNA mismatch repair: is it time for Lynch III? Clin. Genet.71(6), 499–500 (2007).
  • Bandipalliam P. Syndrome of early onset colon cancers, hematologic malignancies and features of neurofibromatosis in HNPCC families with homozygous mismatch repair gene mutations. Fam. Cancer4(4), 323–333 (2005).
  • Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: Have we so far seen only the tip of an iceberg? Hum. Genet.124(2), 105–122 (2008).
  • Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res.62, 3925–3928 (2002).
  • Miyakura Y, Sugano K, Akasu T et al. Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin. Gastroenterol. Hepatol.2(2), 147–156 (2004).
  • Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet.36, 497–501 (2004).
  • Hitchins M, Williams R, Cheong K et al. MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology129(5), 1392–1399 (2005).
  • Hitchins MP, Wong JJ, Suthers G et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N. Engl. J. Med.356(7), 697–705 (2007).
  • Chan TL, Yuen ST, Kong CK et al. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet.38(10), 1178–1183 (2006).
  • Ligtenberg MJ, Kuiper RP, Chan TL et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3´ exons of TACSTD1. Nat. Genet.41(1), 112–117 (2009).
  • Campbell PT, Curtin K, Ulrich CM et al. Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. Gut58(5), 661–667 (2009).
  • Lipkin SM, Rozek LS, Rennert G et al. The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nat. Genet.36(7), 694–699 (2004).
  • Raptis S, Mrkonjic M, Green RC et al. MLH1-93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J. Natl Cancer Inst.99(6), 463–474 (2007).
  • Hudson KL, Holohan MK, Collins FS. Keeping pace with the times – the genetic information nondiscrimination act of 2008. N. Engl. J. Med.358(25), 2661–2663 (2008).
  • Aaltonen LA, Salovaara R, Kristo P et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med.338(21), 1481–1487 (1998).
  • Lindor NM, Petersen GM, Hadley DW et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA296(12), 1507–1517 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.