60
Views
3
CrossRef citations to date
0
Altmetric
Review

Genomic predictors of prostate cancer therapy outcomes

, &
Pages 619-636 | Published online: 09 Jan 2014

References

  • American Cancer Society. Cancer Facts & Figures 2008. American Cancer Society, GA, USA (2009).
  • Catalona WJ, Richie JP, Ahmann FR et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J. Urol.151(5), 1283–1290 (1994).
  • Soh S, Kattan MW, Berkman S, Wheeler TM, Scardino PT. Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy? J. Urol.157(6), 2212–2218 (1997).
  • Denis LJ, Murphy GP, Schroder FH. Report of the consensus workshop on screening and global strategy for prostate cancer. Cancer75(5), 1187–1207 (1995).
  • Andriole GL, Crawford ED, Grubb RL 3rd et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med.360(13), 1310–1319 (2009).
  • Schroder FH, Hugosson J, Roobol MJ et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med.360(13), 1320–1328 (2009).
  • Holmberg L, Bill-Axelson A, Helgesen F et al. A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N. Engl. J. Med.347(11), 781–789 (2002).
  • Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J. Natl. Cancer Inst.90(10), 766–771 (1998).
  • D’Amico AV, Whittington R, Malkowicz SB et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J. Clin. Oncol.17(1), 168–172 (1999).
  • Makarov DV, Trock BJ, Humphreys EB et al. Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005. Urology69(6), 1095–1101 (2007).
  • Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol.17(5), 1499–1507 (1999).
  • Lessells AM, Burnett RA, Howatson SR et al. Observer variability in the histopathological reporting of needle biopsy specimens of the prostate. Hum. Pathol.28(6), 646–649 (1997).
  • Hernandez DJ, Nielsen ME, Han M et al. Natural history of pathologically organ-confined (pT2), Gleason score 6 or less, prostate cancer after radical prostatectomy. Urology72(1), 172–176 (2008).
  • Lee MC, Dong F, Stephenson AJ, Jones JS, Magi-Galluzzi C, Klein EA. The Epstein criteria predict for organ-confined but not insignificant disease and a high likelihood of cure at radical prostatectomy. Eur. Urol.58, 90–95 (2010).
  • Fukagai T, Namiki T, Namiki H, Carlile RG, Shimada M, Yoshida H. Discrepancies between Gleason scores of needle biopsy and radical prostatectomy specimens. Pathol. Int.51(5), 364–370 (2001).
  • Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol.169(2), 517–523 (2003).
  • Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA281(17), 1591–1597 (1999).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100(14), 8418–8423 (2003).
  • Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer – current status and future directions. Ann. Oncol.20(12), 1913–1927 (2009).
  • Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet365(9472), 1687–1717 (2005).
  • Nielsen DL, Andersson M, Kamby C. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat. Rev.35(2), 121–136 (2009).
  • Lopergolo A, Zaffaroni N. Biomolecular markers of outcome prediction in prostate cancer. Cancer115(13 Suppl.), 3058–3067 (2009).
  • Pinkel D, Segraves R, Sudar D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet.20(2), 207–211 (1998).
  • Paris PL, Andaya A, Fridlyand J et al. Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum. Mol. Genet.13(13), 1303–1313 (2004).
  • Paris PL, Weinberg V, Simko J et al. Preliminary evaluation of prostate cancer metastatic risk biomarkers. Int. J. Biol. Markers20(3), 141–145 (2005).
  • Paris PL, Weinberg V, Albo G et al. A group of genome-based biomarkers that add to a Kattan nomogram for predicting progression in men with high-risk prostate cancer. Clin. Cancer Res.16(1), 195–202 (2010).
  • El Gammal AT, Bruchmann M, Zustin J et al. Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin. Cancer Res.16(1), 56–64 (2010).
  • Cookson MS, Aus G, Burnett AL et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol.177(2), 540–545 (2007).
  • Stephenson AJ, Kattan MW, Eastham JA et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J. Clin. Oncol.24(24), 3973–3978 (2006).
  • Amling CL, Bergstralh EJ, Blute ML, Slezak JM, Zincke H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J. Urol.165(4), 1146–1151 (2001).
  • Sandler HM, Eisenberger MA. Assessing and treating patients with increasing prostate specific antigen following radical prostatectomy. J. Urol.178(3 Pt 2), S20–S24 (2007).
  • Wang Y, Kreisberg JI, Ghosh PM. Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr. Cancer Drug Targets7(6), 591–604 (2007).
  • Myers MP, Stolarov JP, Eng C et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA94(17), 9052–9057 (1997).
  • Chow LM, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett.241(2), 184–196 (2006).
  • Dong JT, Sipe TW, Hyytinen ER et al. PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene17(15), 1979–1982 (1998).
  • Halvorsen OJ, Haukaas SA, Akslen LA. Combined loss of PTEN and p27 expression is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent disease in localized prostate cancer. Clin. Cancer Res.9(4), 1474–1479 (2003).
  • Schmitz M, Grignard G, Margue C et al. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int. J. Cancer120(6), 1284–1292 (2007).
  • Bedolla R, Prihoda TJ, Kreisberg JI et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin. Cancer Res.13(13), 3860–3867 (2007).
  • Yoshimoto M, Cutz JC, Nuin PA et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. Cancer Genet. Cytogenet.169(2), 128–137 (2006).
  • Yoshimoto M, Cunha IW, Coudry RA et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br. J. Cancer97(5), 678–685 (2007).
  • Carver BS, Tran J, Gopalan A et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet.41(5), 619–624 (2009).
  • King JC, Xu J, Wongvipat J et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet.41(5), 524–526 (2009).
  • Yoshimoto M, Joshua AM, Cunha IW et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol.21(12), 1451–1460 (2008).
  • Normanno N, De Luca A, Bianco C et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene366(1), 2–16 (2006).
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol.2(2), 127–137 (2001).
  • de Muga S, Hernandez S, Agell L et al. Molecular alterations of EGFR and PTEN in prostate cancer: association with high-grade and advanced-stage carcinomas. Mod. Pathol.23, 703–712 (2010).
  • Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr. Cancer Drug Targets9(2), 237–249 (2009).
  • Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev. Cancer1(3), 245–250 (2001).
  • Tomlins SA, Rhodes DR, Perner S et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310(5748), 644–648 (2005).
  • Tomlins SA, Mehra R, Rhodes DR et al.TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res.66(7), 3396–3400 (2006).
  • Tomlins SA, Laxman B, Dhanasekaran SM et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature448(7153), 595–599 (2007).
  • Attard G, Clark J, Ambroisine L et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br. J. Cancer99(2), 314–320 (2008).
  • Helgeson BE, Tomlins SA, Shah N et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res.68(1), 73–80 (2008).
  • Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res.68(9), 3094–3098 (2008).
  • Hermans KG, van der Korput HA, van Marion R et al. Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res.68(18), 7541–7549 (2008).
  • Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int. J. Cancer94(5), 705–710 (2001).
  • Lin B, Ferguson C, White JT et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res.59(17), 4180–4184 (1999).
  • Kim TS, Heinlein C, Hackman RC, Nelson PS. Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol. Cell Biol.26(3), 965–975 (2006).
  • Yang L, Xia L, Wu DY et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene21(1), 148–152 (2002).
  • Yoshimoto M, Joshua AM, Chilton-Macneill S et al. Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia8(6), 465–469 (2006).
  • Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res.66(17), 8347–8351 (2006).
  • Nam RK, Sugar L, Yang W et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br. J. Cancer97(12), 1690–1695 (2007).
  • Lapointe J, Kim YH, Miller MA et al. A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Mod. Pathol.20(4), 467–473 (2007).
  • Gopalan A, Leversha MA, Satagopan JM et al.TMPRSS2–ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res.69(4), 1400–1406 (2009).
  • Saramaki OR, Harjula AE, Martikainen PM, Vessella RL, Tammela TL, Visakorpi T. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res.14(11), 3395–3400 (2008).
  • Hermans KG, Boormans JL, Gasi D et al. Overexpression of prostate-specific TMPRSS2(exon 0)–ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin. Cancer Res.15(20), 6398–6403 (2009).
  • Barwick BG, Abramovitz M, Kodani M et al. Prostate cancer genes associated with TMPRSS2–ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br. J. Cancer102(3), 570–576 (2010).
  • Dhanasekaran SM, Barrette TR, Ghosh D et al. Delineation of prognostic biomarkers in prostate cancer. Nature412(6849), 822–826 (2001).
  • Singh D, Febbo PG, Ross K et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell1(2), 203–209 (2002).
  • Lapointe J, Li C, Higgins JP et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA101(3), 811–816 (2004).
  • Henshall SM, Afar DE, Hiller J et al. Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res.63(14), 4196–4203 (2003).
  • Bibikova M, Chudin E, Arsanjani A et al. Expression signatures that correlated with Gleason score and relapse in prostate cancer. Genomics89(6), 666–672 (2007).
  • Nakagawa T, Kollmeyer TM, Morlan BW et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS ONE3(5), e2318 (2008).
  • Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest.113(6), 913–923 (2004).
  • Yu YP, Landsittel D, Jing L et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol.22(14), 2790–2799 (2004).
  • Algar E, Brickell S, Deeble G, Amor D, Smith P. Analysis of CDKN1C in Beckwith Wiedemann syndrome. Hum. Mutat.15(6), 497–508 (2000).
  • Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM. Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc. Natl Acad. Sci. USA96(6), 2949–2951 (1999).
  • Stephenson AJ, Smith A, Kattan MW et al. Integration of gene expression profiling and clinical variables to predict prostate carcinoma recurrence after radical prostatectomy. Cancer104(2), 290–298 (2005).
  • Abrahamsen HN, Steiniche T, Nexo E, Hamilton-Dutoit SJ, Sorensen BS. Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J. Mol. Diagn.5(1), 34–41 (2003).
  • Cheville JC, Karnes RJ, Therneau TM et al. Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy. J. Clin. Oncol.26(24), 3930–3936 (2008).
  • Cooper CS, Campbell C, Jhavar S. Mechanisms of disease: biomarkers and molecular targets from microarray gene expression studies in prostate cancer. Nat. Clin. Pract. Urol.4(12), 677–687 (2007).
  • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA103(15), 5923–5928 (2006).
  • Rubin MA, Bismar TA, Andren O et al. Decreased α-methylacyl CoA racemase expression in localized prostate cancer is associated with an increased rate of biochemical recurrence and cancer-specific death. Cancer Epidemiol. Biomarkers Prev.14(6), 1424–1432 (2005).
  • Kristiansen G, Pilarsky C, Wissmann C et al. Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J. Pathol.205(3), 359–376 (2005).
  • Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell6(2), 185–195 (2004).
  • Varambally S, Dhanasekaran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419(6907), 624–629 (2002).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5(7), 522–531 (2004).
  • Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99(24), 15524–15529 (2002).
  • Ambs S, Prueitt RL, Yi M et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res.68(15), 6162–6170 (2008).
  • Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene27(12), 1788–1793 (2008).
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res.67(13), 6130–6135 (2007).
  • Volinia S, Calin GA, Liu CG et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7), 2257–2261 (2006).
  • Schaefer A, Jung M, Kristiansen G et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol. Oncol.28(1), 4–13 (2010).
  • Tong AW, Fulgham P, Jay C et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther.16(3), 206–216 (2009).
  • Schaefer A, Jung M, Mollenkopf HJ et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer126(5), 1166–1176 (2010).
  • Moyzis RK, Buckingham JM, Cram LS et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA85(18), 6622–6626 (1988).
  • Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res.56(1), 218–222 (1996).
  • Schmitt H, Blin N, Zankl H, Scherthan H. Telomere length variation in normal and malignant human tissues. Genes Chromosomes Cancer11(3), 171–177 (1994).
  • Donaldson L, Fordyce C, Gilliland F et al. Association between outcome and telomere DNA content in prostate cancer. J. Urol.162(5), 1788–1792 (1999).
  • Fordyce CA, Heaphy CM, Joste NE, Smith AY, Hunt WC, Griffith JK. Association between cancer-free survival and telomere DNA content in prostate tumors. J. Urol.173(2), 610–614 (2005).
  • Treat EG, Heaphy CM, Massie LW et al. Telomere DNA content in prostate biopsies predicts early rise in prostate-specific antigen after radical prostatectomy for prostate cancer. Urology75(3), 724–729 (2010).
  • Bird AP. CpG-rich islands and the function of DNA methylation. Nature321(6067), 209–213 (1986).
  • Lee WH, Morton RA, Epstein JI et al. Cytidine methylation of regulatory sequences near the π-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91(24), 11733–11737 (1994).
  • Nelson WG, Yegnasubramanian S, Agoston AT et al. Abnormal DNA methylation, epigenetics, and prostate cancer. Front. Biosci.12, 4254–4266 (2007).
  • Xia C, Hu J, Ketterer B, Taylor JB. The organization of the human GSTP1-1 gene promoter and its response to retinoic acid and cellular redox status. Biochem. J.313(Pt 1), 155–161 (1996).
  • Bastian PJ, Yegnasubramanian S, Palapattu GS et al. Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur. Urol.46(6), 698–708 (2004).
  • Nakayama M, Bennett CJ, Hicks JL et al. Hypermethylation of the human glutathione S-transferase-p gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol.163(3), 923–933 (2003).
  • Brooks JD, Weinstein M, Lin X et al. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol. Biomarkers Prev.7(6), 531–536 (1998).
  • Suzuki H, Toyota M, Kondo Y, Shinomura Y. Inflammation-related aberrant patterns of DNA methylation: detection and role in epigenetic deregulation of cancer cell transcriptome. Methods Mol. Biol.512, 55–69 (2009).
  • Bastian PJ, Palapattu GS, Lin X et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res.11(11), 4037–4043 (2005).
  • Ellinger J, Bastian PJ, Jurgan T et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology71(1), 161–167 (2008).
  • Bastian PJ, Palapattu GS, Yegnasubramanian S et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol.179(2), 529–534 (2008).
  • Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res.47(20), 5274–5276 (1987).
  • Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA. High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate39(3), 166–174 (1999).
  • Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology150(9), 3991–4002 (2009).
  • Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer8(7), 497–511 (2008).
  • Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J. Clin. Oncol.18(19), 3352–3359 (2000).
  • Zelefsky MJ, Lyass O, Fuks Z et al. Predictors of improved outcome for patients with localized prostate cancer treated with neoadjuvant androgen ablation therapy and three-dimensional conformal radiotherapy. J. Clin. Oncol.16(10), 3380–3385 (1998).
  • Valdagni R, Rancati T, Fiorino C. Predictive models of toxicity with external radiotherapy for prostate cancer: clinical issues. Cancer115(13 Suppl.), 3141–3149 (2009).
  • Roach M 3rd, Waldman F, Pollack A. Predictive models in external beam radiotherapy for clinically localized prostate cancer. Cancer115(13 Suppl.), 3112–3120 (2009).
  • Pollack A, Grignon DJ, Heydon KH et al. Prostate cancer DNA ploidy and response to salvage hormone therapy after radiotherapy with or without short-term total androgen blockade: an analysis of RTOG 8610. J. Clin. Oncol.21(7), 1238–1248 (2003).
  • Abdel-Wahab M, Berkey BA, Krishan A et al. Influence of number of CAG repeats on local control in the RTOG 86–10 protocol. Am J. Clin. Oncol.29(1), 14–20 (2006).
  • Montgomery JS, Price DK, Figg WD. The androgen receptor gene and its influence on the development and progression of prostate cancer. J. Pathol.195(2), 138–146 (2001).
  • Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst.90(16), 1225–1229 (1998).
  • Roach M 3rd, De Silvio M, Rebbick T et al. Racial differences in CYP3A4 genotype and survival among men treated on Radiation Therapy Oncology Group (RTOG) 9202: a Phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys.69(1), 79–87 (2007).
  • Turesson I, Carlsson J, Brahme A, Glimelius B, Zackrisson B, Stenerlow B. Biological response to radiation therapy. Acta Oncol.42(2), 92–106 (2003).
  • Zelefsky MJ, Fuks Z, Hunt M et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J. Urol.166(3), 876–881 (2001).
  • Peeters ST, Heemsbergen WD, van Putten WL et al. Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int. J. Radiat. Oncol. Biol. Phys.61(4), 1019–1034 (2005).
  • Chism DB, Horwitz EM, Hanlon AL, Pinover WH, Mitra RK, Hanks GE. Late morbidity profiles in prostate cancer patients treated to 79–84 Gy by a simple four-field coplanar beam arrangement. Int. J. Radiat. Oncol. Biol. Phys.55(1), 71–77 (2003).
  • Fiorino C, Rancati T, Valdagni R. Predictive models of toxicity in external radiotherapy: dosimetric issues. Cancer115(13 Suppl.), 3135–3140 (2009).
  • Tucker SL, Turesson I, Thames HD. Evidence for individual differences in the radiosensitivity of human skin. Eur. J. Cancer28A(11), 1783–1791 (1992).
  • Baumann M, Holscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother. Oncol.69(2), 121–125 (2003).
  • Svensson JP, Stalpers LJ, Esveldt-van Lange RE et al. Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med.3(10), e422 (2006).
  • Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.25(1), 25–29 (2000).
  • Fiorino C, Cozzarini C, Vavassori V et al. Relationships between DVHs and late rectal bleeding after radiotherapy for prostate cancer: analysis of a large group of patients pooled from three institutions. Radiother. Oncol.64(1), 1–12 (2002).
  • Rieger KE, Hong WJ, Tusher VG, Tang J, Tibshirani R, Chu G. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc. Natl Acad. Sci. USA101(17), 6635–6640 (2004).
  • Valdagni R, Rancati T, Ghilotti M et al. To bleed or not to bleed. A prediction based on individual gene profiling combined with dose-volume histogram shapes in prostate cancer patients undergoing three-dimensional conformal radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.74(5), 1431–1440 (2009).
  • Shariat SF, Roudier MP, Wilcox GE et al. Comparison of immunohistochemistry with reverse transcription-PCR for the detection of micrometastatic prostate cancer in lymph nodes. Cancer Res.63(15), 4662–4670 (2003).
  • Huggins C SR, Hodges CV. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg.43, 209–223 (1941).
  • Loblaw DA, Virgo KS, Nam R et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J. Clin. Oncol.25(12), 1596–1605 (2007).
  • Eisenberger MA, Walsh PC. Early androgen deprivation for prostate cancer? N. Engl. J. Med.341(24), 1837–1838 (1999).
  • Messing EM, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N. Engl. J. Med.341(24), 1781–1788 (1999).
  • Schroder FH, Kurth KH, Fossa SD et al. Early versus delayed endocrine treatment of pN1–3 M0 prostate cancer without local treatment of the primary tumor: results of European Organisation for the Research and Treatment of Cancer 30846 – a Phase III study. J. Urol.172(3), 923–927 (2004).
  • Boormans JL, Hermans KG, Made AC et al. Expression of the androgen-regulated fusion gene TMPRSS2–ERG does not predict response to endocrine treatment in hormone-naive, node-positive prostate cancer. Eur. Urol. DOI: 10.1158/1078-0432.CCR-09-2505 (2009) (Epub ahead of print).
  • Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res.66(22), 10658–10663 (2006).
  • Oh WK, Kantoff PW. Treatment of locally advanced prostate cancer: is chemotherapy the next step? J. Clin. Oncol.17(11), 3664–3675 (1999).
  • Tannock IF, de Wit R, Berry WR et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med.351(15), 1502–1512 (2004).
  • Petrylak DP, Tangen CM, Hussain MH et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med.351(15), 1513–1520 (2004).
  • Febbo PG, Richie JP, George DJ et al. Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin. Cancer Res.11(14), 5233–5240 (2005).
  • Huang CY, Beer TM, Higano CS et al. Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15. Clin. Cancer Res.13(19), 5825–5833 (2007).
  • Bauskin AR, Brown DA, Kuffner T et al. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer Res.66(10), 4983–4986 (2006).
  • Eastham JA, Kelly WK, Grossfeld GD, Small EJ. Cancer and Leukemia Group B (CALGB) 90203: a randomized Phase 3 study of radical prostatectomy alone versus estramustine and docetaxel before radical prostatectomy for patients with high-risk localized disease. Urology62(Suppl. 1), 55–62 (2003).
  • Auclerc G, Antoine EC, Cajfinger F, Brunet-Pommeyrol A, Agazia C, Khayat D. Management of advanced prostate cancer. Oncologist5(1), 36–44 (2000).
  • Winquist E. Chemotherapy for non-hormone refractory prostate cancer. Can. J. Urol.13(Suppl. 1), 67–70 (2006).
  • Ross RW, Oh WK, Xie W et al. Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer. J. Clin. Oncol.26(6), 842–847 (2008).
  • Mousses S, Wagner U, Chen Y et al. Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene20(46), 6718–6723 (2001).
  • Chen CD, Welsbie DS, Tran C et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10(1), 33–39 (2004).
  • Eigl BJ, Eggener SE, Baybik J et al. Timing is everything: preclinical evidence supporting simultaneous rather than sequential chemohormonal therapy for prostate cancer. Clin. Cancer Res.11(13), 4905–4911 (2005).
  • Ling MT, Wang X, Ouyang XS, Xu K, Tsao SW, Wong YC. Id-1 expression promotes cell survival through activation of NF-κB signalling pathway in prostate cancer cells. Oncogene22(29), 4498–4508 (2003).
  • Lykke-Andersen K, Schaefer L, Menon S, Deng XW, Miller JB, Wei N. Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death. Mol. Cell. Biol.23(19), 6790–6797 (2003).
  • Sircar K, Yoshimoto M, Monzon FA et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J. Pathol.218(4), 505–513 (2009).
  • Reid AH, Attard G, Ambroisine L et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer102(4), 678–684 (2010).
  • Berthold DR, Pond GR, Roessner M, de Wit R, Eisenberger M, Tannock AI. Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 study. Clin. Cancer Res.14(9), 2763–2767 (2008).
  • Deeken JF, Cormier T, Price DK et al. A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J. DOI: 10.1038/tpj.2009.57 (2009) (Epub ahead of print).
  • Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer1(1), 34–45 (2001).
  • Attard G, Reid AH, Yap TA et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol.26(28), 4563–4571 (2008).
  • Mao X, Shaw G, James SY et al. Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J. Androl.10(3), 467–473 (2008).
  • Fleming JA, Stewart JW. A critical and comparative study of methods of isolating tumour cells from the blood. J. Clin. Pathol.20(2), 145–151 (1967).
  • Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med.351(8), 781–791 (2004).
  • Cohen SJ, Punt CJ, Iannotti N et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol.26(19), 3213–3221 (2008).
  • de Bono JS, Scher HI, Montgomery RB et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res.14(19), 6302–6309 (2008).
  • Attard G, Swennenhuis JF, Olmos D et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res.69(7), 2912–2918 (2009).
  • Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol.23(32), 8253–8261 (2005).
  • Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T. Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J. Urol.164(6), 1992–1995 (2000).
  • Mendiratta P, Mostaghel E, Guinney J et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol.27(12), 2022–2029 (2009).
  • Baccarani M, Cortes J, Pane F et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European Leukemia Net. J. Clin. Oncol.27(35), 6041–6051 (2009).
  • Yu EY, Wilding G, Posadas E et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res.15(23), 7421–7428 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.