143
Views
11
CrossRef citations to date
0
Altmetric
Review

Molecular pathways involved in loss of graft function in kidney transplant recipients

, , &
Pages 269-284 | Published online: 09 Jan 2014

References

  • Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med.342(9), 605–612 (2000).
  • Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am. J. Transplant.4(3), 378–383 (2004).
  • European Mycophenolate Mofetil Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet345(8961), 1321–1325 (1995).
  • Halloran PF, Langone AJ, Helderman JH, Kaplan B. Assessing long-term nephron loss: is it time to kick the CAN grading system? Am. J. Transplant.4(11), 1729–1730 (2004).
  • Solez K, Colvin RB, Racusen LC et al. Banff ‘05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am. J. Transplant.7(3), 518–726 (2007).
  • 2008 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1998–2007. US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, MD, USA (2008).
  • Solez K, Colvin RB, Racusen LC et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant.8(4), 753–760 (2008).
  • Womer KL, Kaplan B. Recent development in kidney transplantation – a critical assessment. Am. J. Transplant.9(6), 1265–1271 (2009).
  • Nankivell BJ, Chapman JR. Chronic allograft nephropathy: current concepts and future directions. Transplantation81(5), 643–654 (2006).
  • Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J. Am. Soc. Nephrol.15(2), 390–397 (2004).
  • Racusen LC, Solez K, Colvin R. Fibrosis and atrophy in the renal allograft: Interim report and new directions. Am. J. Transplant.2(3), 203–206 (2002).
  • Collini A, Kalmar P, Dhamo A, Ruggieri G, Carmellini M. Renal transplant from very old donors: how far can we go? Transplantation87(12), 1830–1836 (2009).
  • Vadivel N, Tullius SG, Chandraker A. Chronic allograft nephropathy. Semin. Nephrol.27(4), 414–429 (2007).
  • Roodnat JI, van Riemsdijk IC, Mulder PG et al. The superior results of living donor renal transplantation are not completely caused by selection or short cold ischemia time: a single center, multivariate analysis. Transplantation75(12), 2014–2018 (2003).
  • Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N. Engl. J. Med.349(24), 2326–2333 (2003).
  • Serón D. Interstitial fibrosis and tubular atrophy in renal allograft protocol biopsies as a surrogate of graft survival. Transplant. Proc.41(2), 769–770 (2009).
  • Solez K, Vincenti F, Filo RS. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. Transplantation66(12), 1736–1740 (1998).
  • Vincenti F, Larsen C, Durrbach A et al. Belatacept Study Group. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med.353(8), 770–781 (2005).
  • Morrissey PE, Yango AF. Renal transplantation: older recipients and donors. Clin. Geriatr. Med.22(3), 687–707 (2006).
  • Keith DS, Cantarovich M, Paraskevas S, Tchervenkov J. Recipient age and risk of chronic allograft nephropathy in primary deceased donor kidney transplant. Transpl. Int.19(8), 649–656 (2006).
  • Moreso F, Ibernon M, Goma M et al. Subclinical rejection associated with chronic allograft nephropathy in protocol biopsies as a risk factor for late graft loss. Am. J. Transplant.6(4), 747–752 (2006).
  • Freese P, Svalander CT, Molne J, Norden G, Nyberg G. Chronic allograft nephropathy – biopsy findings and outcome. Nephrol. Dial. Transplant.16(12), 2401–2416 (2001).
  • Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med.338, 1813–1821 (1998).
  • Womer KL, Stone JR, Murphy B et al. Indirect allorecognition of donor class I and II major histocompatibility complex peptides promotes the development of transplant vasculopathy. J. Am. Soc. Nephrol.12, 2500–2506 (2001).
  • Isoniemi H, Taskinen E, Hayry P. Histological chronic allograft damage index accurately predicts chronic renal allograft rejection. Transplantation58(11), 1195–1198 (1994).
  • Nankivell BJ, Borrows RJ, Fung CL et al. δ analysis of posttransplantation tubulointerstitial damage. Transplantation78(3), 434–441 (2004).
  • Kuypers DR, Chapman JR, O’Connell PJ et al. Predictors of renal transplant histology at three months. Transplantation67(9), 1222–1230 (1999).
  • Cosio FG, Pelletier RP, Sedmak DD et al. Pathologic classification of chronic allograft nephropathy: pathogenic and prognostic implications. Transplantation67(5), 690–696 (1999).
  • Weir MR, Wali RK. Minimizing the risk of chronic allograft nephropathy. Transplantation87(8 Suppl.), S14–S18 (2009).
  • Sijpkens YW, Doxiadis II, van Kemenade FJ et al. Chronic rejection with or without transplant vasculopathy. Clin. Transplant.17(3), 163–170 (2003).
  • Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am. J. Transplant.4(8), 1289–1295 (2004).
  • Ponticelli C. Can mTOR inhibitors reduce the risk of late kidney allograft failure? Transpl. Int.21(1), 2–10 (2008).
  • Wali RK, Weir MR. Chronic allograft dysfunction: can we use mammalian target of rapamycin inhibitors to replace calcineurin inhibitors to preserve graft function? Curr. Opin. Organ Transplant.13(6), 614–621 (2008).
  • Halloran PF. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med.351(26), 2715–2729 (2004).
  • Mota A, Arias M, Taskinen EI et al. Sirolimus-based therapy following early cyclosporine withdrawal provides significantly improved renal histology and function at 3 years. Am. J. Transplant.4(6), 953–961 (2004).
  • Russ G, Segoloni G, Oberbauer R, et al. Superior outcomes in renal transplantation after early cyclosporine withdrawal and sirolimus maintenance therapy, regardless of baseline renal function. Transplantation80(9), 1204–1211 (2005).
  • Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev. (Orlando)22(1), 1–5 (2008).
  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest.110(3), 341–350 (2002).
  • Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol.15(1), 1–12 (2004).
  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol.19(12), 2282–2287 (2008).
  • Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol.159(4), 1465–1475 (2001).
  • Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest.112(12), 1776–1784 (2003).
  • Djamali A, Reese S, Yracheta J, Oberley T, Hullett D, Becker B. Epithelial-to-mesenchymal transition and oxidative stress in chronic allograft nephropathy. Am. J. Transplant.5(3), 500–509 (2005).
  • Vongwiwatana A, Tasanarong A, Rayner DC, Melk A, Halloran PF. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am. J. Transplant.5(6), 1367–1374 (2005).
  • Hertig A, Verine J, Mougenot B et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am. J. Transplant.6(12), 2937–2946 (2006).
  • Serón D, Moreso F, Fulladosa X, Hueso M, Carrera M, Grinyó JM. Reliability of chronic allograft nephropathy diagnosis in sequential protocol biopsies. Kidney Int.61(2), 727–733 (2002).
  • Chapman JR. Longitudinal analysis of chronic allograft nephropathy: clinicopathologic correlations. Kidney Int. Suppl. (99), S108–S112 (2005).
  • Ortiz F, Paavonen T, Tornroth T et al. Predictors of renal allograft histologic damage progression. J. Am. Soc. Nephrol.16(3), 817–824 (2005).
  • Schwarz A, Mengel M, Gwinner W et al. Risk factors for chronic allograft nephropathy after renal transplantation: a protocol biopsy study. Kidney Int.67(1), 341–348 (2005).
  • Vallejos A, Alperovich G, Moreso F et al. Resistive index and chronic allograft nephropathy evaluated in protocol biopsies as predictors of graft outcome. Nephrol. Dial. Transplant.20(11), 2511–2516 (2005).
  • Botev R, Mallié JP, Couchoud C et al. Estimating glomerular filtration rate: Cockcroft–Gault and modification of diet in renal disease formulas compared to renal inulin clearance. Clin. J. Am. Soc. Nephrol.4(5), 899–906 (2009).
  • Pöge U, Gerhardt T, Stoffel-Wagner B et al. Can modifications of the MDRD formula improve the estimation of glomerular filtration rate in renal allograft recipients? Nephrol. Dial. Transplant.22(12), 3610–3615 (2007).
  • Gera M, Slezak JM, Rule AD, Larson TS, Stegall MD, Cosio FG. Assessment of changes in kidney allograft function using creatinine-based estimates of glomerular filtration rate. Am. J. Transplant.7(4), 880–887 (2007).
  • Mas V, Diller A, Albano S et al. Intragraft expression of transforming growth factor-β 1 by a novel quantitative reverse transcription polymerase chain reaction ELISA in long lasting kidney recipients. Transplantation70(4), 612–616 (2000).
  • Robertson H, Wong WK, Talbot D, Burt AD, Kirby JA. Tubulitis after renal transplantation: Demonstration of an association between CD103+ T cells, transforming growth factor b1 expression and rejection grade. Transplantation71(2), 306–313 (2001).
  • Campistol JM, Iñigo P, Larios S, Bescos M, Oppenheimer F. Role of transforming growth factor-β1 in the progression of chronic allograft nephropathy. Nephrol. Dial. Transplant.16(Suppl. 1), 114–116 (2001).
  • Harris S, Coupes BM, Roberts SA, Roberts IS, Short CD, Brenchley PE. TGF-β1 in chronic allograft nephropathy following renal transplantation. J. Nephrol.20(2), 177–185 (2007).
  • Lee S, Kim DJ, Park MG et al. Expression of transforming growth factor-β1 and hypoxia-inducible factor-1α in renal transplantation. Transplant. Proc.40(7), 2147–2148 (2008).
  • Pilmore HL, Yan Y, Eris JM, Hennessy A, McCaughan GW, Bishop GA. Time course of upregulation of fibrogenic growth factors and cellular infiltration in a rodent model of chronic renal allograft rejection. Transpl. Immunol.10(4), 245–254 (2002).
  • Otsuka G, Stempien-Otero A, Frutkin AD, Dichek DA. Mechanisms of TGF-β1-induced intimal growth: plasminogen-independent activities of plasminogen activator inhibitor-1 and heterogeneous origin of intimal cells. Circ. Res.100(9), 1300–1307 (2007).
  • Huang Y, Noble NA, Zhang J, Xu C, Border WA. Renin-stimulated TGF-β1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int.72(1), 45–52 (2007).
  • Mas V, Alvarellos T, Giraudo C, Massari P, De Boccardo G. Intragraft messenger RNA expression of angiotensinogen: relationship with transforming growth factor β-1 and chronic allograft nephropathy in kidney transplant patients. Transplantation74(5), 718–721 (2002).
  • Becker BN, Jacobson LM, Hullett DA et al. Type 2 angiotensin II receptor expression in human renal allografts: an association with chronic allograft nephropathy. Clin. Nephrol.57(1): 19–26 (2002).
  • Garrett Q, Khaw PT, Blalock TD, Schultz GS, Grotendorst GR, Daniels JT. Involvement of CTGF in TGF-β1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest. Ophthalmol. Vis. Sci.45(4), 1109–1116 (2004).
  • Grotendorst GR, Duncan MR. Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J.19, 729–738 (2005).
  • Ito Y, Goldschmeding R, Bende R et al. Kinetics of connective tissue growth factor expression during experimental proliferative glomerulonephritis. J. Am. Soc. Nephrol.12(3), 472–484 (2001).
  • Yokoi H, Mukoyama M, Sugawara A et al. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am. J. Physiol. Renal Physiol.282(5), F933–F942 (2002).
  • Okada H, Kikuta T, Kobayashi T et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J. Am. Soc. Nephrol.16(1), 133–143 (2005).
  • Inkinen K, Soots A, Krogerus L, Loginov R, Bruggeman C, Lautenschlager I. Cytomegalovirus enhance expression of growth factors during the development of chronic allograft nephropathy in rats. Transpl. Int.18(6), 743–749 (2005).
  • Franceschini N, Cheng O, Zhang X, Ruiz P, Mannon RB. Inhibition of prolyl-4-hydroxylase ameliorates chronic rejection of mouse kidney allografts. Am. J. Transplant.3(4), 396–402 (2003).
  • Csencsits K, Wood SC, Lu G et al. Transforming growth factor β-induced connective tissue growth factor and chronic allograft rejection. Am. J. Transplant.6(5), 959–966 (2006).
  • Cheng O, Thuillier R, Sampson E et al. Connective tissue growth factor is a biomarker and mediator of kidney allograft fibrosis. Am. J. Transplant.6(10), 2292–2306 (2006).
  • Siddiqui I, Khan ZA, Lian δ et al. Endothelin-mediated oncofetal fibronectin expression in chronic allograft nephropathy. Transplantation82(3), 406–414 (2006).
  • Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J. Am. Soc. Nephrol.17(4), 932–942 (2006).
  • Malmström NK, Kallio EA, Rintala JM et al. Vascular endothelial growth factor in chronic rat allograft nephropathy. Transpl. Immunol.9(2), 136–144 (2008).
  • Ma X, Lu YP, Yang L et al. Expressions of angiopoietin-1, angiopoietin-2, and Tie2 and their roles in rat renal allografts with chronic allograft nephropathy. Transplant. Proc.40(8), 2795–2799 (2008).
  • Mansfield ES, Sarwal MM. Arraying the orchestration of allograft pathology. Am. J. Transplant.4(6), 853–862 (2004).
  • Halloran PF, Einecke G. Microarrays and transcriptome analysis in renal transplantation. Nat. Clin. Pract. Nephrol.2(1), 2–3 (2006).
  • Ying L, Sarwal M. In praise of arrays. Pediatr. Nephrol.24(9), 1643–1659 (2009).
  • Flechner SM, Kurian SM, Head SR et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant.4(11), 1475–1485 (2004).
  • Sarwal M, Fernandez-Fresnedo G, Rodrigo E et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med.349(2), 125–138 (2003).
  • Scherer A, Krause A, Walker JR, Korn A, Niese D, Raulf F. Early prognosis of the development of renal chronic allograft rejection by gene expression profiling of human protocol biopsies. Transplantation75(8), 1323–1330 (2003).
  • Mas V, Maluf D, Archer K et al. Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers. Transplantation83(4), 448–457 (2007).
  • Hotchkiss H, Chu TT, Hancock WW et al. Differential expression of profibrotic and growth factors in chronic allograft nephropathy. Transplantation81(3), 342–349 (2006).
  • Maluf DG, Mas VR, Archer KJ et al. Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis. Mol. Med.14(5–6), 276–285 (2008).
  • Libby P, Zhao DX. Allograft arteriosclerosis and immune-driven angiogenesis. Circulation107(9), 1237–1239 (2003).
  • Reinders ME, Briscoe DM. Angiogenesis and allograft rejection. Graft5, 96–98 (2002).
  • Kang DH, Kanellis J, Hugo C et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol.13(3), 806–816 (2002).
  • Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am. J. Kidney Dis.12(7), 1448–1457 (2001).
  • Seron D, Moreso F, Ramon JM, Hueso M, Condom E, Fulladosa X. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation69(9), 1849–1855 (2000).
  • Nicholson ML, McCulloch TA, Harper SJ et al. Early measurement of interstitial fibrosis predicts long-term renal function and graft survival in renal transplantation. Br. J. Surg.83(8), 1082–1085 (1996).
  • Scherer A, Gwinner W, Mengel M et al. Transcriptome changes in renal allograft protocol biopsies at 3 months precede the onset of interstitial fibrosis/tubular atrophy (IF/TA) at 6 months. Nephrol. Dial. Transplant.24(8), 2567–2575 (2009).
  • Mengel M, Gwinner W, Schwarz A et al. Infiltrates in protocol biopsies from renal allografts. Am. J. Transplant.7(2), 356–365 (2007).
  • Randhawa P. Role of donor kidney biopsies in renal transplantation. Transplantation71(10), 1361–1365 (2001).
  • Gaber LW, Moore LW, Alloway RR, Amiri MH, Vera SR, Gaber AO. Glomerulosclerosis as a determinant of posttransplant function of older donor renal allografts. Transplantation60(4), 334–339 (1995).
  • Hauser P, Schwarz C, Mitterbauer C et al. Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab. Invest.84(3), 353–361 (2004).
  • Yanek K, Maluf D, Archer K et al. Molecular profiles in donor kidney biopsies associated with warm ischemia time. Presented at: American Transplant Congress. Boston, MA, USA, 31 May–3 June 2009.
  • Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet364(9447), 1814–1927 (2004).
  • Azuma H, Nadeau K, Takada M, Mackenzie HS, Tilney NL. Cellular and molecular predictors of chronic renal dysfunction after initial ischemia/reperfusion injury of a single kidney. Transplantation64(2), 190–197 (1997).
  • Chapman JR, O’Connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J. Am. Soc. Nephrol.16(10), 3015–3026 (2005).
  • Mas VR, Archer KJ, Yanek K et al. Gene expression patterns in deceased donor kidneys developing delayed graft function after kidney transplantation. Transplantation85(4), 626–635 (2008).
  • Mueller TF, Reeve J, Jhangri GS et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am. J. Transplant.8(1), 78–85 (2008).
  • Maluf D, Mas V, Archer K et al. Time-zero biopsies in kidney transplantation: Gene expression data predict the short and long term outcomes post-transplantation. Abstract, Presented at: American Transplant Congress. Boston, MA, USA, 31 May–3 June 2009.
  • Naesens M, Sarwal M. Looking into the crystal chip: can microarrays predict graft function? Transplantation85(4), 499–500 (2008).
  • Tatapudi RR, Muthukumar T, Dadhania δ et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int.65(6), 2390–2397 (2004).
  • Magee CC, Denton MD, Womer KL et al. Assessment by flow cytometry of intracellular cytokine production in the peripheral blood cells of renal transplant recipients. Clin. Transplant.18(4), 395–401 (2004).
  • Mas VR, Mas LA, Archer KJ et al. Evaluation of gene panel mRNAs in urine samples of kidney transplant recipients as a non-invasive tool of graft function. Mol. Med.13(5–6), 315–324 (2007).
  • Kurian SM, Heilman R, Mondala TS et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS ONE4(7), e6212 (2009).
  • Flechner SM, Kurian SM, Solez K et al.De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am. J. Transplant.4(11), 1776–1785 (2004).
  • Malumbres R, Chen J, Tibshirani R et al. Paraffin-based 6-gene model predicts outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Blood111(12), 5509–5514 (2008).
  • Bunnag S, Einecke G, Reeve J et al. Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches. Am. Soc. Nephrol.20(5), 1149–1160 (2009).
  • Bullinger L, Döhner K, Bair E et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med.350(16), 1605–1616 (2004).
  • Huber LA. Is proteomics heading in the wrong direction? Nat. Rev. Mol. Cell. Biol.4(1), 74–80 (2003).
  • Aebersold R. A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom.14, 685–695 (2003).
  • O’Riordan E, Orlova TN, Podust VN et al. Characterization of urinary peptide biomarkers of acute rejection in renal allografts. Am. J. Transplant.7(4), 930–940 (2007).
  • Clarke W, Silverman BC, Zhang Z et al. Characterization of renal allograft rejection by urinary proteomic analysis. Ann. Surg.237(5), 660–665 (2003).
  • Wittke S, Haubitz M, Walden M et al. Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am. J. Transplant.5(10), 2479–2488 (2005).
  • Schaub S, Rush D, Wilkins J et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J. Am. Soc. Nephrol.15(1), 219–227 (2004).
  • Quintana LF, Solé-Gonzalez A, Kalko SG et al. Proteomics to detect biomarkers for chronic allograft dysfunction. J. Am. Soc. Nephrol.20(2), 428–435 (2009).
  • Schaub S, Wilkins JA, Rush D, Nickerson P. Developing a tool for noninvasive monitoring of renal allografts. Expert Rev. Proteomics3(5), 497–509 (2006).
  • Christians U, Schmitz V, Schöning W et al. Toxicodynamic therapeutic drug monitoring of immunosuppressants: promises, reality, and challenges. Ther. Drug Monit.30(2), 151–158 (2008).
  • Mayr M, Madhu B, Xu Q. Proteomics and metabolomics combined in cardiovascular research. Trends Cardiovasc. Med.17(2), 43–48 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.