146
Views
34
CrossRef citations to date
0
Altmetric
Review

Biomarkers in the diagnosis of aspiration syndromes

, , &
Pages 309-319 | Published online: 09 Jan 2014

References

  • Mendelson C. The aspiration of stomach contents into the lungs during obstetric anesthesia. Am. J. Obstet. Gynecol.52, 191–205 (1946).
  • Olsson GL, Hallen B, Hambraeus-Jonzon K. Aspiration during anaesthesia: a computer-aided study of 185,358 anaesthetics. Acta Anaesthesiol. Scand.30, 84–92 (1986).
  • Adnet F, Baud F. Relation between Glasgow Coma Scale and aspiration pneumonia. Lancet348, 123–124 (1996).
  • Marrie Marrie TJ, Durant H, Kwan C. Nursing home-acquired pneumonia: a case–control study. J. Am. Geriatr. Soc.34, 697–702 (1986).
  • Ravelli AM, Panarotto MB, Verdoni L, Consolati V, Bolognini S. Pulmonary aspiration shown by scintigraphy in gastroesophageal reflux-related respiratory disease. Chest130(5), 1520–1526 (2006).
  • Daniels SK, Brailey K, Priestly DH, Herrington LR, Weisberg LA, Foundas AL. Aspiration in patients with acute stroke. Arch. Phys. Med. Rehabil.79, 14–19 (1998).
  • Marik PE. Aspiration pneumonitis and aspiration pneumonia. N. Engl. J. Med.344, 665–671 (2001).
  • Mylotte JM, Goodnough S, Gould M. Pneumonia versus aspiration pneumonitis in nursing home residents: prospective application of a clinical algorithm. J. Am. Geriatr. Soc.53, 755–761 (2005).
  • Kollef MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Ann. Intern. Med.134, 298–314 (2001).
  • Kollef MH. The prevention of ventilator-associated pneumonia. N. Engl. J. Med.340, 627–634 (1999).
  • Warner MA, Warner ME, Weber J. Clinical significance of pulmonary aspiration during the perioperative period. Anesthesiology78, 56–62 (1993).
  • Daniels S, Brailey K, Priestly D et al. Aspiration in patients with acute stroke. Arch. Phys. Med. Rehabil.79, 14–19 (1998).
  • Landay M, Christensen E, Bynum L. Pulmonary manifestations of acute aspiration of gastric contents. AJR Am. J. Roentgenol.131, 587–592 (1978).
  • Patti MG, Debas HT, Pellegrini CA. Esophageal manometry and 24-hour pH monitoring in the diagnosis of pulmonary aspiration secondary to gastroesophageal reflux. Am. J. Surg.163, 401–406 (1992).
  • Chester M. A volume and pH determination of tracheal residue postaspiration. J. Clin. Anesth.5, 240–243 (1993).
  • Potts RG, Zaroukian M, Guerrero P et al. Comparison of blue dye visualization and glucose oxidase test strip methods for detecting pulmonary aspiration of enteral feedings in intubated adults. Chest103, 117–121 (1993).
  • Irwin R, Doherty P, Bartter T et al. Evaluation of technetium pertechnetate as a radionuclide marker of pulmonary aspiration of gastric contents in rabbits. Chest93, 1270–1275 (1988).
  • Marik P, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest115, 178–183 (1999).
  • Knauer-Fischer S, Ratjen F. Lipid-laden macrophages in bronchoalveolar lavage fluid as a marker for pulmonary aspiration. Pediatr. Pulmonol.27, 419–422 (1999).
  • Langmore SE, Schatz K, Olson N. Endoscopic and videofluoroscopic evaluations of swallowing and aspiration. Ann. Otol. Rhinol. Laryngol.100, 678–681 (1991).
  • Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol. Sci.73, 170–181 (2003).
  • Martling CR, Lundberg JM. Capsaicin sensitive afferents contribute to acute airway edema following tracheal instillation of hydrochloric acid or gastric juice in the rat. Anesthesiology68, 350–356 (1988).
  • Arredouani MS, Palecanda A, Koziel H et al. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol.175, 6058–6064 (2005).
  • Banerjee A, Gerondakis S. Coordinating TLR-activated signaling pathways in cells of the immune system. Immunol. Cell. Biol.85, 420–424 (2007).
  • McAuley DF, Frank JA, Fang X, Matthay MA. Clinically relevant concentrations of β2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit. Care Med.32(7), 1470–6 (2004).
  • Knight PR, Druskovich G, Tait AR, Johnson KJ. The role of neutrophils, oxidants, and proteases in the pathogenesis of acid pulmonary injury. Anesthesiology77(4), 772–778 (1992).
  • Knight PR, Davidson BA, Russo TA et al. Progressive, severe lung injury secondary to the interaction of insults in gastric aspiration. Exp. Lung Res.30, 535–557 (2004).
  • Davidson BA, Knight PR, Helinski JD, Nader ND, Shanley TP, Johnson KJ. The role of tumor necrosis factor-α in the pathogenesis of aspiration pneumonitis in rats. Anesthesiology9, 1486–1499 (1999).
  • Raghavendran K, Davidson BA, Mullan BA et al. Acid and particulate-induced aspiration lung injury in mice: importance of MCP-1 (monocyte chemoattractant protein-1). Am. J. Physiol. Lung Cell Mol. Physiol.289, L132–L143 (2005).
  • Shanley TP, Davidson BA, Nader ND et al. The role of macrophage inflammatory protein-2 (MIP-2) in aspiration-induced lung injury. Crit. Care Med.28, 2437–2444 (2000).
  • Knight PR, Rutter T, Tait AR, Coleman E, Johnson K. Pathogenesis of gastric particulate lung injury: a comparison and interaction with acidic pneumonitis. Anesth. Analg.77, 754–760 (1993).
  • Folkesson HG, Matthay MA, Hébert CA, Broaddus VC. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J. Clin. Invest.96(1), 107–116 (1995).
  • Hirschowitz BI. Pepsinogen. Postgrad. Med. J.60, 743–750 (1984).
  • Kageyama T. Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell. Mol. Life Sci.59, 288–306 (2002).
  • Fruton JS. A history of pepsin and related enzymes. The Quarterly Review of Biology77(2), 127–147 (2002).
  • Anson M. Estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol.22, 79–89 (1938).
  • Badellino MM, Buckman RF.Jr, Malaspina PJ, Eynon CA, O’Brien GM, Kueppers F. Detection of pulmonary aspiration of gastric contents in an animal model by assay of peptic activity in bronchoalveolar fluid. Crit. Care Med.24(11), 1881–1885 (1996).
  • Metheny NA, Dahms TE, Chang YH, Stewart BJ, Frank PA, Clouse RE. Detection of pepsin in tracheal secretions after forced small-volume aspirations of gastric juice. J. Parenter. Enteral. Nutr.28(2), 79–84 (2004).
  • Farrell S, McMaster C, Gibson D, Shields MD, McCallion WA. Pepsin in bronchoalveolar lavage fluid: a specific and sensitive method of diagnosing gastro-oesophageal reflux-related pulmonary aspiration. J. Pediatr. Surg.41, 289–293 (2006).
  • Krishnan U, Mitchell JD, Messina I, Day AS, Bohane TD. Assay of tracheal pepsin as a marker of reflux aspiration. J. Pediatr. Gastroenterol. Nutr.35(3), 303–308 (2002).
  • Meert KL, Daphtary KM, Metheny NA. Detection of pepsin and glucose in tracheal secretions as indicators of aspiration in mechanically ventilated children. Pediatr. Crit. Care Med.3, 19–22 (2002).
  • Farhath S, Aghai ZH, Nakhla T et al. Pepsin, a reliable marker of gastric aspiration, is frequently detected in tracheal aspirates from premature ventilated neonates: relationship with feeding and methylxanthine therapy. J. Pediatr. Gastroenterol. Nutr.43(3), 336–341 (2006).
  • Farhath S, He Z, Nakhla T et al. Pepsin, a marker of gastric contents, is increased in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatrics121, e253–e259 (2008).
  • Gharpure V, Meert KL, Sarnaik AP, Metheney NA. Indicators of postpyloric feeding tube placement in children. Crit. Care Med.28, 2962–2966 (2002).
  • Metheny NA, Chang Y-H, Ye JS et al. Pepsin as a marker for pulmonary aspiration. Am. J. Crit. Care11, 150–154 (2002).
  • Metheny NA, Clouse RE, Chang YH, Stewart BJ, Oliver DA, Kollef MH. Tracheobronchial aspiration of gastric contents in critically ill tube-fed patients: frequency, outcomes, and risk factors. Crit. Care Med.34(4), 1007–1015 (2006).
  • Ward C, Forrest IA, Brownlee IA et al. Pepsin like activity in bronchoalveolar lavage fluid is suggestive of gastric aspiration in lung allografts. Thorax60(10), 872–874 (2005).
  • Corwin RW, Irwin RS. The lipid-laden alveolar macrophage as a marker of aspiration in parenchymal lung disease. Am. Rev. Respir. Dis.132(3), 576–581 (1985).
  • Colombo JL, Hallberg TK. Recurrent aspiration in children: lipid-laden alveolar macrophage quantitation. Pediatr. Pulmonol.3(2), 86–89 (1987).
  • Ahrens P, Noll C, Kitz R, Willigens P, Zielen S, Hofmann D. Lipid-laden macrophages (LLAM): a useful marker of silent aspiration in children. Pediatr. Pulmonol.28, 83–88 (1999).
  • Véjar L, Le Cerf P. Pulmonary aspiration in children. Quantification of lipid laden alveolar macrophages. Rev. Med. Child.125(2), 191–194 (1997).
  • Yang YJ, Steele CT, Anbar RD, Sinacori JT, Powers CN. Quantitation of lipid-laden macrophages in evaluation of lower airway cytology specimens from pediatric patients. Diagn. Cytopathol.24, 98–103 (2001).
  • Sacco O, Fregonese B, Silvestri M, Sabatini F, Mattioli G, Rossi GA. Bronchoalveolar lavage and esophageal pH monitoring data in children with “difficult to treat” respiratory symptoms. Pediatr. Pulmonol.30, 313–319 (2000).
  • Parameswaran K, Anvari M, Efthimiadis A, Kamada D, Hargreave FE, Allen CJ. Lipid-laden macrophages in induced sputum are a marker of oropharyngeal reflux and possible gastric aspiration. Eur. Respir. J.16, 1119–1122 (2000).
  • Nussbaum E, Maggi JC, Mathis R, Galant SP. Association of lipid-laden alveolar macrophages and gastroesophageal reflux in children. J. Pediatr.110, 190–194 (1987).
  • Kazachkov MY, Muhlebach MS, Livasy CA, Noah TL. Lipid laden macrophage index and inflammation in bronchoalveolar lavage fluids in children. Eur. Respir. J.18, 790–795 (2001).
  • Usha K, John M, Vivian T. Fat laden macrophages in tracheal aspirates as a marker of reflux aspiration: a negative report. Gastroenterol. Hepatol.35, 309–313 (2002).
  • Colombo JL, Hallberg TK. Pulmonary aspiration and lipid-laden macrophages: in search of gold (standards). Pediatr. Pulmonol.28, 78–82 (1999).
  • Furuya MEY, Moreno-Cordova V, Ramirez-Figueroa JL, Vargas MH, Ramón-García G, Ramírez-San Juan DH. Cutoff value of lipid-laden alveolar macrophages for diagnosing aspiration in infants and children. Pediatr. Pulmonol.42, 452–457 (2007).
  • Pinto LA, Dias AO, Machado DC, Jones MH, Stein RT, Pitrez PM. Diagnosis of pulmonary aspiration: a mouse model using a starch granule test in bronchoalveolar lavage. Respirology13, 594–598 (2008).
  • Bauer ML, Lyrene RK. Chronic aspiration in children: evaluation of the lipid-laden macrophage index. Pediatr. Pulmonol.28, 94–100 (1999).
  • Köksal D, Özkan B, Þimþek C, Köksal A, Aðaçkýran Y, Þaþmaz N. Lipid-laden alveolar macrophage index in sputum is not useful in the differential diagnosis of pulmonary symptoms secondary to gastroesophageal reflux. Arch. Med. Res.36, 485–489 (2005).
  • Chang AB, Cox NC, Purcell J et al. Airway cellularity, lipid laden macrophages and microbiology of gastric juice and airways in children with reflux oesophagitis. Respir. Res.6, 72 (2005).
  • Rosen R, Fritz J, Nurko A, Simon D, Nurko S. Lipid-laden macrophage index is not an indicator of gastroesophageal reflux-related respiratory disease in children. Pediatrics121, e879–e884 (2008).
  • Kajetanowicz A, Stinson D, Laybolt KS, Resch L. Lipid-laden macrophages in the tracheal aspirate of ventilated neonates receiving intralipid: a pilot study. Pediatr. Pulmonol.28, 101–108 (1999).
  • Tamura A, Hebisawa A, Fukushima K, Yotsumoto H, Mori M. Lipoid pneumonia in lung cancer: radiographic and pathological features. Jpn. J. Clin. Oncol.28, 492–496 (1998).
  • Corrin B, King E. Experimental endogenous lipid pneumonia and silicosis. J. Pathol.97, 325–330 (1969).
  • Vichinsky E, Williams R, Das M et al. Pulmonary fat embolism: a distinct cause of severe acute chest syndrome in sickle cell anemia. Blood11, 3107–3112 (1994).
  • Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol.164, 4991–4995 (2000).
  • Daws M, Lanier L, Seaman W, Ryan JC. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol.31, 743–791 (2002).
  • Bouchon A, Facchetti F, Weigand M, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature410, 1103–1107 (2001).
  • Gibot S, Cravoisy A. Soluble form of the triggering receptor expressed on myeloid cells-1 as a marker of microbial infection. Clin. Med. Res.2(3), 181–187 (2004).
  • Giamarellos-Bourboulis EJ, Mouktaroudi M, Tsaganos T et al. Evidence for the participation of soluble triggering receptor expressed on myeloid cells-1 in the systemic inflammatory response syndrome after multiple trauma. Trauma65(6), 1385–1390 (2008).
  • Park JJ, Cheon JH, Kim BY et al. Correlation of serum-soluble triggering receptor expressed on myeloid cells-1 with clinical disease activity in inflammatory bowel disease. Dig. Dis. Sci.54(7), 1525–1531 (2009).
  • Collins CE, La DT, Yang HT et al. Elevated synovial expression of triggering receptor expressed on myeloid cells-1 (TREM-1) in patients with septic arthritis or rheumatoid arthritis. Ann. Rheum. Dis.68, 1768–1774, (2009).
  • El Solh AA, Akinnusi ME, Peter M, Berim I, Schultz MJ, Pineda L. Triggering receptors expressed on myeloid cells in pulmonary aspiration syndromes. Intens. Care Med.34(6), 1012–9 (2008).
  • Hansson LO, Lindquist L. C-reactive protein: its role in the diagnosis and follow-up of infectious diseases. Curr. Opin. Infect. Dis.10, 196–201 (1997).
  • Black S, Kushner I, Samols D. C-reactive protein. J. Biol. Chem.279, 484–487 (2004).
  • Marnell L, Mold C, Du Clos TW. C-reactive protein: ligands, receptors and role in inflammation. Clin. Immunol.117, 104–111 (2005).
  • Adnet F, Borron SW, Vicaut E et al. Value of C-reactive protein in the detection of bacterial contamination at the time of presentation in drug-induced aspiration pneumonia. Chest112(2), 466–471 (1997).
  • Le Moullec JM, Jullienne A, Chenais J et al. The complete sequence of human preprocalcitonin. FEBS Lett.167, 93–97 (1984).
  • Whang KT, Steinwald PM, White JC et al. Serum calcitonin precursors in sepsis and systemic inflammation. J. Clin. Endocrinol. Metab.83, 3296–3301 (1998).
  • Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet341, 515–518 (1993).
  • Schroeder S, Hochreiter M, Koehler T et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch. Surg.394(2), 221–226 (2009).
  • Schuetz P, Christ-Crain M, Thomann R et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA302(10), 1059–1066 (2009).
  • Martinot M, Hansmann Y, De Martino S et al. Procalcitonin in pyelonephritis and acute community-acquired pneumonia in adults. Presse Med.30, 1091–1096 (2001).
  • Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin. Chim. Acta323, 17–29 (2002).
  • Remskar M, Horvat M, Hojker S et al. Procalcitonin in patients with acute myocardial infarction. Wien Klin. Wochenschr.114, 205–210 (2002).
  • Kallio R, Surcel HM, Bloigu A et al. C-reactive protein, procalcitonin and interleukin-8 in the primary diagnosis of infections in cancer patients. Eur. J. Cancer36, 889–894 (2000).
  • Nylen ES, O’Neill W, Jordan MH et al. Serum procalcitonin as an index of inhalation injury in burns. Horm. Metab. Res.24(9), 439–443 (1992).
  • Nylen ES, Snider RH Jr, Thompson KA, Rohatgi P, Becker K. Pneumonitis-associated hyperprocalcitoninemia. Am. J. Med. Sci.312(1), 12–18 (1996).
  • Pusch F, Wildling E, Freitag H, Weinstabl C. Procalcitonin as a diagnostic marker in patients with aspiration after closed head injury. Wien Klin. Wochenschr.113(17–18), 676–680 (2001).
  • Hutson AD, Davidson BA, Raghavendran K et al. Statistical prediction of the type of gastric aspiration lung injury based on early cytokine/chemokine profiles. Anesthesiology104, 73–79 (2006).
  • Manderscheid PA, Bodkin RP, Davidson BA, Russo TA, Knight PR. Post-surgical modulation of cytokine expression in a murine model of nosocomial pneumonia. Clin. Diagn. Lab. Immunol.11, 742–751 (2004).
  • Busse WW. Leukotrienes and inflammation. Am. J. Respir. Crit. Care Med.157, S210–S213 (1998).
  • Goldman G, Welbourn R, Klausner JM et al. Neutrophil accumulations due to pulmonary thromboxane synthesis mediate acid aspiration injury. J. Appl. Physiol.70, 1511–1517 (1991).
  • Carraro S, Andreola B, Alinovi R et al. Exhaled leukotriene B4 in children with community acquired pneumonia. Pediatr. Pulmonol.43, 982–986 (2008).
  • Crouser ED, Julian MW, Huff JE, Struck J, Cook CH. Carbamoyl phosphate synthase-1: a marker of mitochondrial damage and depletion in the liver during sepsis. Crit. Care Med.34(9), 2439–2446 (2006).
  • Wanecek M, Weitzberg E, Rudehill A, Oldner A. The endothelin system in septic and endotoxin shock. Eur. J. Pharmacol.407(1–2), 1–15 (2000).
  • Brauner JS, Rohde LE, Clausell N. Circulating endothelin-1 and tumor necrosis factor-α: early predictors of mortality in patients with septic shock. Intens. Care Med.26(3), 305–313 (2000).
  • Schuetz P, Stolz D, Mueller B et al. Endothelin-1 precursor peptides correlate with severity of disease and outcome in patients with community acquired pneumonia. BMC Infect. Dis.28, 8–22 (2008).
  • Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest.108(7), 949–955 (2001).
  • Chavakis T, Bierhaus A, Nawroth PP. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect.6(13), 1219–1225 (2004).
  • Bopp C, Hofer S, Weitz J et al. sRAGE is elevated in septic patients and associated with patients outcome. Bierhaus J. Surg. Res.147(1), 79–83 (2008).
  • Uchida T, Shirasawa M, Ware LB et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am. J. Respir. Crit. Care Med.173(9), 1008–1015 (2006).
  • Calfee CS, Ware LB, Eisner MD et al. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax63(12), 1083–1089 (2008).
  • Struck J, Morgenthaler NG, Bergmann A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides26(12), 2500–2504 (2005).
  • Mutlu GM, Factor P. Role of vasopressin in the management of septic shock. Intens. Care Med.30(7), 1276–1291 (2004).
  • Müller B, Morgenthaler N, Stolz D et al. Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur. J. Clin. Invest.37(2), 145–152 (2007).
  • Seligman R, Papassotiriou J, Morgenthaler NG, Meisner M, Teixeira PJ. Copeptin, a novel prognostic biomarker in ventilator-associated pneumonia. Crit. Care12(1), R11 (2008).
  • Kitamura K, Kangawa K, Kawamoto M et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun.192, 553–560 (1993).
  • von der Hardt K, Kandler MA, Popp K et al. Aerosolized adrenomedullin suppresses pulmonary transforming growth factor-β1 and interleukin-1 β gene expression in vivo.Eur. J. Pharmacol.457, 71–76 (2002).
  • Iwamoto M, Osajima A, Tamura M et al. Adrenomedullin inhibits pressure-induced mesangial MCP-1 expression through activation of protein kinase A. J. Nephrol.16, 673–681 (2003).
  • Okumura H, Nagaya N, Itoh T et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation109, 242–248 (2004).
  • Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr. Rev.21(2), 138–167 (2000).
  • Christ-Crain M, Morgenthaler NG, Stolz D et al. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia. Crit. Care10(3), R96 (2006).
  • Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrügger RW. Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment. Pharmacol. Ther.15(3), 379–388 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.